Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1906

Question Number 17939    Answers: 1   Comments: 1

∫secxdx

$$\int{secxdx}\: \\ $$

Question Number 17938    Answers: 2   Comments: 2

If only downward motion along lines is allowed, what is the total number of paths from point P to point Q in the figure below?

$$\mathrm{If}\:\mathrm{only}\:\mathrm{downward}\:\mathrm{motion}\:\mathrm{along}\:\mathrm{lines}\:\mathrm{is} \\ $$$$\mathrm{allowed},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{paths}\:\mathrm{from}\:\mathrm{point}\:\mathrm{P}\:\mathrm{to}\:\mathrm{point}\:\mathrm{Q}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{figure}\:\mathrm{below}? \\ $$

Question Number 17936    Answers: 2   Comments: 1

Two particles start moving towards each other with constant acceleration of 1 m/s^2 . If their initial separation is 100 m, find after what time they will meet each other (A) 40s (B) 45s (C) 50 s (D)55s

$$\mathrm{Two}\:\mathrm{particles}\:\mathrm{start}\:\mathrm{moving}\:\mathrm{towards} \\ $$$$\mathrm{each}\:\mathrm{other}\:\mathrm{with}\:\mathrm{constant}\:\mathrm{acceleration} \\ $$$$\mathrm{of}\:\:\mathrm{1}\:{m}/{s}^{\mathrm{2}} .\:\mathrm{If}\:\mathrm{their}\:\mathrm{initial}\:\mathrm{separation}\:\mathrm{is} \\ $$$$\mathrm{100}\:\mathrm{m},\:\mathrm{find}\:\mathrm{after}\:\mathrm{what}\:\mathrm{time}\:\mathrm{they}\:\mathrm{will} \\ $$$$\mathrm{meet}\:\mathrm{each}\:\mathrm{other} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{40}{s}\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{45}{s}\:\:\:\:\left(\mathrm{C}\right)\:\mathrm{50}\:{s}\:\left(\mathrm{D}\right)\mathrm{55}{s} \\ $$

Question Number 17919    Answers: 0   Comments: 0

How do the electronic configurations of the elements with Z = 107 − 109 differ from one another?

$$\mathrm{How}\:\mathrm{do}\:\mathrm{the}\:\mathrm{electronic}\:\mathrm{configurations}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{elements}\:\mathrm{with}\:\mathrm{Z}\:=\:\mathrm{107}\:−\:\mathrm{109}\:\mathrm{differ} \\ $$$$\mathrm{from}\:\mathrm{one}\:\mathrm{another}? \\ $$

Question Number 17918    Answers: 0   Comments: 0

Write the electronic configuration and the block to which an element with Z = 90 belongs.

$$\mathrm{Write}\:\mathrm{the}\:\mathrm{electronic}\:\mathrm{configuration}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{block}\:\mathrm{to}\:\mathrm{which}\:\mathrm{an}\:\mathrm{element}\:\mathrm{with} \\ $$$$\mathrm{Z}\:=\:\mathrm{90}\:\mathrm{belongs}. \\ $$

Question Number 17901    Answers: 1   Comments: 2

Question Number 17895    Answers: 0   Comments: 2

Question Number 17909    Answers: 0   Comments: 1

Please answer Q. 17525

$${Please}\:{answer}\:{Q}.\:\mathrm{17525} \\ $$

Question Number 17890    Answers: 0   Comments: 0

Question Number 17948    Answers: 1   Comments: 3

Question Number 17886    Answers: 0   Comments: 7

Question Number 17884    Answers: 1   Comments: 1

Question Number 17879    Answers: 0   Comments: 0

Question Number 17878    Answers: 0   Comments: 0

Question Number 17872    Answers: 2   Comments: 0

Solve : ∣x − 1∣ + ∣x∣ + ∣x + 1∣ = x + 2

$$\mathrm{Solve}\:: \\ $$$$\mid{x}\:−\:\mathrm{1}\mid\:+\:\mid{x}\mid\:+\:\mid{x}\:+\:\mathrm{1}\mid\:=\:{x}\:+\:\mathrm{2} \\ $$

Question Number 17867    Answers: 1   Comments: 0

prove that (2+(√3))^(2n) +(2−(√3))^(2n) is an even integer and that (2+(√3))^(2n) −(2−(√3))^(2n) =w(√3) for some integers w,for all integer n≥1.

$${prove}\:{that}\:\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}{n}} +\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}{n}} {is}\:{an} \\ $$$${even}\:{integer}\:{and}\:{that}\:\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}{n}} −\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}{n}} ={w}\sqrt{\mathrm{3}} \\ $$$${for}\:{some}\:{integers}\:{w},{for}\:{all}\:{integer}\:{n}\geqslant\mathrm{1}. \\ $$$$ \\ $$

Question Number 17866    Answers: 1   Comments: 0

Prove that sin 5A = 5 cos^4 A sin A − 10 cos^2 A sin^3 A + sin^5 A

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{sin}\:\mathrm{5}{A}\:=\:\mathrm{5}\:\mathrm{cos}^{\mathrm{4}} \:{A}\:\mathrm{sin}\:{A}\:− \\ $$$$\mathrm{10}\:\mathrm{cos}^{\mathrm{2}} \:{A}\:\mathrm{sin}^{\mathrm{3}} \:{A}\:+\:\mathrm{sin}^{\mathrm{5}} \:{A} \\ $$

Question Number 17852    Answers: 0   Comments: 1

A particle moves in a straight line (x-axis) with the velocity shown in the figure. Knowing that x = −16 m at t = 0, draw the a-t and x-t curves for the interval 0 < t < 40 s and determine (i) Maximum value of the position coordinate of the particle. (ii) The values of t for which the particle is at a distance of 50 m from the origin.

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{moves}\:\mathrm{in}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line} \\ $$$$\left({x}-\mathrm{axis}\right)\:\mathrm{with}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{figure}.\:\mathrm{Knowing}\:\mathrm{that}\:{x}\:=\:−\mathrm{16}\:\mathrm{m}\:\mathrm{at} \\ $$$${t}\:=\:\mathrm{0},\:\mathrm{draw}\:\mathrm{the}\:{a}-{t}\:\mathrm{and}\:{x}-{t}\:\mathrm{curves}\:\mathrm{for} \\ $$$$\mathrm{the}\:\mathrm{interval}\:\mathrm{0}\:<\:{t}\:<\:\mathrm{40}\:\mathrm{s}\:\mathrm{and}\:\mathrm{determine} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{position} \\ $$$$\mathrm{coordinate}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{The}\:\mathrm{values}\:\mathrm{of}\:{t}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the} \\ $$$$\mathrm{particle}\:\mathrm{is}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{50}\:\mathrm{m}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{origin}. \\ $$

Question Number 17935    Answers: 0   Comments: 0

Ball A is dropped from the top of a building. At the same instant ball B is thrown vertically upwards from the ground. When the ball collide, they are moving in opposite directions and the speed of A(u) is twice the speed of B. The relative velocity of the ball just before collision and relative acceleration between them is (only their magnitudes) (A) 0 and 0 (B) ((3u)/2) and 0 (C) ((3u)/2) and 2g (D) ((3u)/2) and g

$$\mathrm{Ball}\:{A}\:\mathrm{is}\:\mathrm{dropped}\:\mathrm{from}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{a}\:\mathrm{building}. \\ $$$$\mathrm{At}\:\mathrm{the}\:\mathrm{same}\:\mathrm{instant}\:\mathrm{ball}\:{B}\:\mathrm{is}\:\mathrm{thrown} \\ $$$$\mathrm{vertically}\:\mathrm{upwards}\:\mathrm{from}\:\mathrm{the}\:\mathrm{ground}. \\ $$$$\mathrm{When}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{collide},\:\mathrm{they}\:\mathrm{are}\:\mathrm{moving}\:\:\mathrm{in} \\ $$$$\mathrm{opposite}\:\mathrm{directions}\:\mathrm{and}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:{A}\left({u}\right) \\ $$$$\mathrm{is}\:\mathrm{twice}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:{B}.\:\mathrm{The}\:\mathrm{relative}\: \\ $$$$\mathrm{velocity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{just}\:\mathrm{before}\:\mathrm{collision} \\ $$$$\mathrm{and}\:\mathrm{relative}\:\mathrm{acceleration}\:\mathrm{between}\:\mathrm{them} \\ $$$$\mathrm{is}\:\left(\mathrm{only}\:\mathrm{their}\:\mathrm{magnitudes}\right) \\ $$$$\left(\mathrm{A}\right)\:\mathrm{0}\:\mathrm{and}\:\mathrm{0}\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\frac{\mathrm{3}{u}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{0} \\ $$$$\left(\mathrm{C}\right)\:\frac{\mathrm{3}{u}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{2}{g}\:\:\:\left(\mathrm{D}\right)\:\frac{\mathrm{3}{u}}{\mathrm{2}}\:\mathrm{and}\:{g} \\ $$

Question Number 17835    Answers: 2   Comments: 1

A rocket is moving in a gravity free space with a constant acceleration of 2 m/s^2 along + x direction (see figure). The length of a chamber inside the rocket is 4 m. A ball is thrown from the left end of the chamber in +x direction with a speed of 0.3 m/s relative to the rocket. At the same time, another ball is thrown in −x direction with a speed of 0.2 m/s from its right end relative to the rocket. The time in seconds when the two balls hit each other is

$$\mathrm{A}\:\mathrm{rocket}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{in}\:\mathrm{a}\:\mathrm{gravity}\:\mathrm{free} \\ $$$$\mathrm{space}\:\mathrm{with}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{acceleration}\:\mathrm{of} \\ $$$$\mathrm{2}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \:\mathrm{along}\:+\:\mathrm{x}\:\mathrm{direction}\:\left(\mathrm{see}\:\mathrm{figure}\right). \\ $$$$\mathrm{The}\:\mathrm{length}\:\mathrm{of}\:\mathrm{a}\:\mathrm{chamber}\:\mathrm{inside}\:\mathrm{the} \\ $$$$\mathrm{rocket}\:\mathrm{is}\:\mathrm{4}\:\mathrm{m}.\:\mathrm{A}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{thrown}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{left}\:\mathrm{end}\:\mathrm{of}\:\mathrm{the}\:\mathrm{chamber}\:\mathrm{in}\:+{x}\:\mathrm{direction} \\ $$$$\mathrm{with}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{0}.\mathrm{3}\:\mathrm{m}/\mathrm{s}\:\mathrm{relative}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{rocket}.\:\mathrm{At}\:\mathrm{the}\:\mathrm{same}\:\mathrm{time},\:\mathrm{another}\:\mathrm{ball} \\ $$$$\mathrm{is}\:\mathrm{thrown}\:\mathrm{in}\:−{x}\:\mathrm{direction}\:\mathrm{with}\:\mathrm{a}\:\mathrm{speed} \\ $$$$\mathrm{of}\:\mathrm{0}.\mathrm{2}\:\mathrm{m}/\mathrm{s}\:\mathrm{from}\:\mathrm{its}\:\mathrm{right}\:\mathrm{end}\:\mathrm{relative}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{rocket}.\:\mathrm{The}\:\mathrm{time}\:\mathrm{in}\:\mathrm{seconds}\:\mathrm{when} \\ $$$$\mathrm{the}\:\mathrm{two}\:\mathrm{balls}\:\mathrm{hit}\:\mathrm{each}\:\mathrm{other}\:\mathrm{is} \\ $$

Question Number 17830    Answers: 2   Comments: 0

Two candles of the same height are lighted together. First one gets burnt up completely in 3 hours while the second in 4 hours. At what point of time, the length of second candle will be double the length of the first candle?

$$\mathrm{Two}\:\mathrm{candles}\:\mathrm{of}\:\mathrm{the}\:\mathrm{same}\:\mathrm{height}\:\mathrm{are} \\ $$$$\mathrm{lighted}\:\mathrm{together}.\:\mathrm{First}\:\mathrm{one}\:\mathrm{gets}\:\mathrm{burnt}\:\mathrm{up} \\ $$$$\mathrm{completely}\:\mathrm{in}\:\mathrm{3}\:\mathrm{hours}\:\mathrm{while}\:\mathrm{the}\:\mathrm{second} \\ $$$$\mathrm{in}\:\mathrm{4}\:\mathrm{hours}.\:\mathrm{At}\:\mathrm{what}\:\mathrm{point}\:\mathrm{of}\:\mathrm{time},\:\mathrm{the} \\ $$$$\mathrm{length}\:\mathrm{of}\:\mathrm{second}\:\mathrm{candle}\:\mathrm{will}\:\mathrm{be}\:\mathrm{double} \\ $$$$\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{candle}? \\ $$

Question Number 17828    Answers: 1   Comments: 0

Question Number 17815    Answers: 1   Comments: 4

For x ∈ (0, π), the equation sin x + 2 sin 2x − sin 3x = 3 has (1) Infinitely many solutions (2) Three solutions (3) One solution (4) No solution

$$\mathrm{For}\:{x}\:\in\:\left(\mathrm{0},\:\pi\right),\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{sin}\:{x}\:+\:\mathrm{2}\:\mathrm{sin}\:\mathrm{2}{x}\:−\:\mathrm{sin}\:\mathrm{3}{x}\:=\:\mathrm{3}\:\mathrm{has} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Infinitely}\:\mathrm{many}\:\mathrm{solutions} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Three}\:\mathrm{solutions} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{One}\:\mathrm{solution} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{No}\:\mathrm{solution} \\ $$

Question Number 17805    Answers: 0   Comments: 0

If θ=t^n e^(−r^(2/(ut)) ) ,find the value of n which will make (1/r^2 ) (∂/∂r)(r^2 (∂θ/(∂r))) equal to (∂θ/∂t)

$${If}\:\theta={t}^{{n}} {e}^{−{r}^{\frac{\mathrm{2}}{{ut}}} } ,{find}\:{the}\:{value}\:{of} \\ $$$${n}\:{which}\:{will}\:{make}\:\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\:\frac{\partial}{\partial{r}}\left({r}^{\mathrm{2}} \frac{\partial\theta}{\left.\partial{r}\right)}\right. \\ $$$${equal}\:{to}\:\frac{\partial\theta}{\partial{t}} \\ $$

Question Number 17782    Answers: 0   Comments: 1

let a,b,c,x,y and z be complex numbers such that : a=((b+c)/(x−2)), b=((c+a)/(y−2)), c=((a+b)/(z−2)) if xy+yz+zx=1000 and x+y+z=2016, find the value of xyz

$${let}\:{a},{b},{c},{x},{y}\:{and}\:{z}\:{be}\:{complex}\:{numbers} \\ $$$${such}\:{that}\:: \\ $$$${a}=\frac{{b}+{c}}{{x}−\mathrm{2}},\:{b}=\frac{{c}+{a}}{{y}−\mathrm{2}},\:{c}=\frac{{a}+{b}}{{z}−\mathrm{2}} \\ $$$${if}\:{xy}+{yz}+{zx}=\mathrm{1000}\:{and}\:{x}+{y}+{z}=\mathrm{2016}, \\ $$$${find}\:{the}\:{value}\:{of}\:{xyz} \\ $$

Question Number 17779    Answers: 1   Comments: 0

show that {log_a ab}{log_b ab}=logab_a +logab_b

$${show}\:{that}\:\left\{{lo}\underset{{a}} {{g}ab}\right\}\left\{{lo}\underset{{b}} {{g}ab}\right\}={loga}\underset{{a}} {{b}}+{loga}\underset{{b}} {{b}} \\ $$

  Pg 1901      Pg 1902      Pg 1903      Pg 1904      Pg 1905      Pg 1906      Pg 1907      Pg 1908      Pg 1909      Pg 1910   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com