Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1906

Question Number 18922    Answers: 0   Comments: 3

Consider a block sliding over a smooth inclined surface of inclination θ. Relating to Newton′s second law applied on the block, select the incorrect alternative. (1) ΣF_(y′) ≠ 0 (2) ΣF_y = 0 (3) ΣF_x = −mg sin θ (4) ΣF_(x′) < 0

$$\mathrm{Consider}\:\mathrm{a}\:\mathrm{block}\:\mathrm{sliding}\:\mathrm{over}\:\mathrm{a}\:\mathrm{smooth} \\ $$$$\mathrm{inclined}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{inclination}\:\theta.\:\mathrm{Relating} \\ $$$$\mathrm{to}\:\mathrm{Newton}'\mathrm{s}\:\mathrm{second}\:\mathrm{law}\:\mathrm{applied}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{block},\:\mathrm{select}\:\mathrm{the}\:\mathrm{incorrect}\:\mathrm{alternative}. \\ $$$$\left(\mathrm{1}\right)\:\Sigma{F}_{{y}'} \:\neq\:\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\Sigma{F}_{{y}} \:=\:\mathrm{0} \\ $$$$\left(\mathrm{3}\right)\:\Sigma{F}_{{x}} \:=\:−{mg}\:\mathrm{sin}\:\theta \\ $$$$\left(\mathrm{4}\right)\:\Sigma{F}_{{x}'} \:<\:\mathrm{0} \\ $$

Question Number 18918    Answers: 0   Comments: 17

A bird sits on a stretched telegraph wire. The additional tension produced in the wire is (1) Zero (2) Greater than weight of the bird (3) Less than the weight of the bird (4) Equal to the weight of the bird

$$\mathrm{A}\:\mathrm{bird}\:\mathrm{sits}\:\mathrm{on}\:\mathrm{a}\:\mathrm{stretched}\:\mathrm{telegraph} \\ $$$$\mathrm{wire}.\:\mathrm{The}\:\mathrm{additional}\:\mathrm{tension}\:\mathrm{produced} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{wire}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Zero} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Greater}\:\mathrm{than}\:\mathrm{weight}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bird} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Less}\:\mathrm{than}\:\mathrm{the}\:\mathrm{weight}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bird} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{weight}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bird} \\ $$

Question Number 18940    Answers: 0   Comments: 3

A light rope is passed over a pulley such that at its one end a block is attached, and on the other end a boy is climbing up with acceleration (g/2) relative to rope. Mass of the block is 30 kg and that of the boy is 40 kg. Find the tension and acceleration of the rope.

$$\mathrm{A}\:\mathrm{light}\:\mathrm{rope}\:\mathrm{is}\:\mathrm{passed}\:\mathrm{over}\:\mathrm{a}\:\mathrm{pulley}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{at}\:\mathrm{its}\:\mathrm{one}\:\mathrm{end}\:\mathrm{a}\:\mathrm{block}\:\mathrm{is}\:\mathrm{attached}, \\ $$$$\mathrm{and}\:\mathrm{on}\:\mathrm{the}\:\mathrm{other}\:\mathrm{end}\:\mathrm{a}\:\mathrm{boy}\:\mathrm{is}\:\mathrm{climbing} \\ $$$$\mathrm{up}\:\mathrm{with}\:\mathrm{acceleration}\:\frac{{g}}{\mathrm{2}}\:\mathrm{relative}\:\mathrm{to}\:\mathrm{rope}. \\ $$$$\mathrm{Mass}\:\mathrm{of}\:\mathrm{the}\:\mathrm{block}\:\mathrm{is}\:\mathrm{30}\:\mathrm{kg}\:\mathrm{and}\:\mathrm{that}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{boy}\:\mathrm{is}\:\mathrm{40}\:\mathrm{kg}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{tension}\:\mathrm{and} \\ $$$$\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rope}. \\ $$

Question Number 18916    Answers: 0   Comments: 0

x^2 −7x+12<mod(x−4)

$${x}^{\mathrm{2}} −\mathrm{7}{x}+\mathrm{12}<{mod}\left({x}−\mathrm{4}\right) \\ $$

Question Number 18909    Answers: 0   Comments: 1

What does a_ .b_ and a_ ×b_ means ? someone please explain it.

$${What}\:{does}\:\underset{} {{a}}.\underset{} {{b}}\:\:{and}\:\underset{} {{a}}×\underset{} {{b}}\:{means}\:? \\ $$$${someone}\:{please}\:{explain}\:{it}. \\ $$

Question Number 18908    Answers: 0   Comments: 5

Why Does ∣A^→ ×B^→ ∣=ABSinθ ?

$${Why}\:{Does} \\ $$$$\mid\overset{\rightarrow} {{A}}×\overset{\rightarrow} {{B}}\mid={ABSin}\theta\:? \\ $$

Question Number 18907    Answers: 0   Comments: 3

Why Does A^→ .B^→ =ABCosθ?

$${Why}\:{Does}\: \\ $$$$\overset{\rightarrow} {{A}}.\overset{\rightarrow} {{B}}={ABCos}\theta?\: \\ $$

Question Number 18906    Answers: 1   Comments: 0

calculate (dy/dx) where y=cos^(−1) ((a+b cosx)/(b+a cosx)) (b>a)

$$\mathrm{calculate}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:\:\:\mathrm{where}\: \\ $$$$\mathrm{y}=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{a}+\mathrm{b}\:\mathrm{cosx}}{\mathrm{b}+\mathrm{a}\:\mathrm{cosx}}\:\left(\mathrm{b}>\mathrm{a}\right) \\ $$

Question Number 18905    Answers: 0   Comments: 0

prove that the differentiation of(((√(1+x^2 ))−(√(1−x^2 )))/((√(1+x^2 ))+(√(1−x^2 )))) with respect to (√(1−x^4 )) is ((√(1−x^4 ))/x^6 )

$$\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{differentiation} \\ $$$$\mathrm{of}\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }+\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\:\:\mathrm{with}\:\mathrm{respect} \\ $$$$\mathrm{to}\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }\:\:\mathrm{is}\:\:\frac{\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }}{\mathrm{x}^{\mathrm{6}} } \\ $$

Question Number 18904    Answers: 1   Comments: 0

Solve the triangle in which a=((√3)+1), b=((√3)−1) and ∠C=60°.

$${Solve}\:{the}\:{triangle}\:{in}\:{which}\:{a}=\left(\sqrt{\mathrm{3}}+\mathrm{1}\right),\: \\ $$$${b}=\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)\:{and}\:\angle{C}=\mathrm{60}°. \\ $$$$ \\ $$

Question Number 18893    Answers: 1   Comments: 0

Find all values of x, y and k for which the system of equations sin x cos 2y = k^4 − 2k^2 + 2 cos x sin 2y = k + 1 has a solution.

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{values}\:\mathrm{of}\:{x},\:{y}\:\mathrm{and}\:{k}\:\mathrm{for}\:\mathrm{which} \\ $$$$\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations} \\ $$$$\mathrm{sin}\:{x}\:\mathrm{cos}\:\mathrm{2}{y}\:=\:{k}^{\mathrm{4}} \:−\:\mathrm{2}{k}^{\mathrm{2}} \:+\:\mathrm{2} \\ $$$$\mathrm{cos}\:{x}\:\mathrm{sin}\:\mathrm{2}{y}\:=\:{k}\:+\:\mathrm{1} \\ $$$$\mathrm{has}\:\mathrm{a}\:\mathrm{solution}. \\ $$

Question Number 18892    Answers: 1   Comments: 0

If the equation sin6x + cos4x = −2 have a family of nonnegative solutions x_k ′s, where 0 ≤ x_1 < x_2 < x_3 < .... < x_k < x_(k+1) ....., then the value of (1/π)Σ_(k=1) ^(1000) ∣x_(k+1) − x_k ∣ is

$$\mathrm{If}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{sin6}{x}\:+\:\mathrm{cos4}{x}\:=\:−\mathrm{2}\:\mathrm{have} \\ $$$$\mathrm{a}\:\mathrm{family}\:\mathrm{of}\:\mathrm{nonnegative}\:\mathrm{solutions}\:{x}_{{k}} '\mathrm{s}, \\ $$$$\mathrm{where}\:\mathrm{0}\:\leqslant\:{x}_{\mathrm{1}} \:<\:{x}_{\mathrm{2}} \:<\:{x}_{\mathrm{3}} \:<\:....\:<\:{x}_{{k}} \:<\:{x}_{{k}+\mathrm{1}} \\ $$$$.....,\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{1}}{\pi}\underset{{k}=\mathrm{1}} {\overset{\mathrm{1000}} {\sum}}\mid{x}_{{k}+\mathrm{1}} \:−\:{x}_{{k}} \mid\:\mathrm{is} \\ $$

Question Number 18891    Answers: 2   Comments: 0

If angles A and B satisfy (√2) cos A = cos B + cos^3 B and (√2) sin A = sin B − sin^3 B, then the value of 1620sin^2 (A − B) is

$$\mathrm{If}\:\mathrm{angles}\:{A}\:\mathrm{and}\:{B}\:\mathrm{satisfy}\:\sqrt{\mathrm{2}}\:\mathrm{cos}\:{A}\:= \\ $$$$\mathrm{cos}\:{B}\:+\:\mathrm{cos}^{\mathrm{3}} \:{B}\:\mathrm{and}\:\sqrt{\mathrm{2}}\:\mathrm{sin}\:{A}\:=\:\mathrm{sin}\:{B}\:− \\ $$$$\mathrm{sin}^{\mathrm{3}} \:{B},\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{1620sin}^{\mathrm{2}} \left({A}\:−\:{B}\right) \\ $$$$\mathrm{is} \\ $$

Question Number 18889    Answers: 0   Comments: 2

∫ ((d((√(3x))))/(√((√x) + 7)))

$$\int\:\frac{{d}\left(\sqrt{\mathrm{3}{x}}\right)}{\sqrt{\sqrt{{x}}\:+\:\mathrm{7}}} \\ $$

Question Number 18872    Answers: 2   Comments: 0

Question Number 18871    Answers: 0   Comments: 1

Question Number 18866    Answers: 1   Comments: 0

Question Number 18864    Answers: 2   Comments: 1

Question Number 18859    Answers: 1   Comments: 0

If f(x+2)=f(x)+7 and f(1)=2; f(2)=5, then the ratio of f(150) to f(75) is

$$\mathrm{If}\:\mathrm{f}\left(\mathrm{x}+\mathrm{2}\right)=\mathrm{f}\left(\mathrm{x}\right)+\mathrm{7}\:\mathrm{and}\:\mathrm{f}\left(\mathrm{1}\right)=\mathrm{2};\:\mathrm{f}\left(\mathrm{2}\right)=\mathrm{5}, \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{150}\right)\:\mathrm{to}\:\mathrm{f}\left(\mathrm{75}\right)\:\mathrm{is} \\ $$

Question Number 18854    Answers: 0   Comments: 0

lim_(x→0) sin x_x =?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}sin}\:\underset{\mathrm{x}} {\mathrm{x}}\:\:\:\:=? \\ $$

Question Number 18847    Answers: 1   Comments: 0

In an equilateral triangle with usual notations the value of ((27r^2 R)/(r_1 r_2 r_3 )) is equal to

$$\mathrm{In}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{usual} \\ $$$$\mathrm{notations}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{27}{r}^{\mathrm{2}} {R}}{{r}_{\mathrm{1}} {r}_{\mathrm{2}} {r}_{\mathrm{3}} }\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 18846    Answers: 0   Comments: 0

There are two crystalline forms of PbO ; one is yellow and the other is red. The standard enthalpies of formation of these two forms are −217.3 and −219 kJ per mole respectively. Calculate the enthalpy change for the solid-solid phase transition. PbO (yellow) → PbO (red)

$$\mathrm{There}\:\mathrm{are}\:\mathrm{two}\:\mathrm{crystalline}\:\mathrm{forms}\:\mathrm{of}\:\mathrm{PbO}\:; \\ $$$$\mathrm{one}\:\mathrm{is}\:\mathrm{yellow}\:\mathrm{and}\:\mathrm{the}\:\mathrm{other}\:\mathrm{is}\:\mathrm{red}.\:\mathrm{The} \\ $$$$\mathrm{standard}\:\mathrm{enthalpies}\:\mathrm{of}\:\mathrm{formation}\:\mathrm{of} \\ $$$$\mathrm{these}\:\mathrm{two}\:\mathrm{forms}\:\mathrm{are}\:−\mathrm{217}.\mathrm{3}\:\mathrm{and}\:−\mathrm{219} \\ $$$$\mathrm{kJ}\:\mathrm{per}\:\mathrm{mole}\:\mathrm{respectively}.\:\mathrm{Calculate}\:\mathrm{the} \\ $$$$\mathrm{enthalpy}\:\mathrm{change}\:\mathrm{for}\:\mathrm{the}\:\mathrm{solid}-\mathrm{solid} \\ $$$$\mathrm{phase}\:\mathrm{transition}. \\ $$$$\mathrm{PbO}\:\left(\mathrm{yellow}\right)\:\rightarrow\:\mathrm{PbO}\:\left(\mathrm{red}\right) \\ $$

Question Number 18885    Answers: 0   Comments: 0

Question Number 18886    Answers: 0   Comments: 0

Question Number 18841    Answers: 1   Comments: 0

Question Number 18830    Answers: 1   Comments: 2

If sin 2x = a find the simplest expression for cos x

$$\mathrm{If}\:\mathrm{sin}\:\mathrm{2}{x}\:=\:{a} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{simplest}\:\mathrm{expression}\:\mathrm{for}\:\mathrm{cos}\:{x} \\ $$

  Pg 1901      Pg 1902      Pg 1903      Pg 1904      Pg 1905      Pg 1906      Pg 1907      Pg 1908      Pg 1909      Pg 1910   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com