Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1898

Question Number 19679    Answers: 0   Comments: 1

Question Number 19675    Answers: 1   Comments: 1

Question Number 19668    Answers: 0   Comments: 2

Question Number 19665    Answers: 0   Comments: 0

Question Number 19666    Answers: 1   Comments: 0

∫ x^4 (√(x^2 + 1)) dx

$$\int\:{x}^{\mathrm{4}} \sqrt{{x}^{\mathrm{2}} \:+\:\mathrm{1}}\:{dx} \\ $$

Question Number 19659    Answers: 1   Comments: 0

((1+secθ)/(secθ))=((sin^(2 ) θ)/(1−cosθ))

$$\frac{\mathrm{1}+{sec}\theta}{{sec}\theta}=\frac{{sin}^{\mathrm{2}\:} \theta}{\mathrm{1}−{cos}\theta} \\ $$$$ \\ $$

Question Number 19658    Answers: 0   Comments: 0

=((sec x−1)/(sec x+1)) =((sec x+(1−1)−1)/(sec x+1)) =(((sec x+1)−2)/(sec x+1)) =((sec x+1)/(sec x+1))−(2/(sec x+1)) =1−(2/(sec x+1)) =1−2(sec x+1)^(−1) (d/dx)(1−2(sec x+1)^(−1) ) =−2(−1(sec x+1)^(−2) )(sec x tan x) =((2 sec x tan x)/((sec x+1)^2 ))

$$=\frac{\mathrm{sec}\:\mathrm{x}−\mathrm{1}}{\mathrm{sec}\:\mathrm{x}+\mathrm{1}} \\ $$$$=\frac{\mathrm{sec}\:\mathrm{x}+\left(\mathrm{1}−\mathrm{1}\right)−\mathrm{1}}{\mathrm{sec}\:\mathrm{x}+\mathrm{1}} \\ $$$$=\frac{\left(\mathrm{sec}\:\mathrm{x}+\mathrm{1}\right)−\mathrm{2}}{\mathrm{sec}\:\mathrm{x}+\mathrm{1}} \\ $$$$=\frac{\mathrm{sec}\:\mathrm{x}+\mathrm{1}}{\mathrm{sec}\:\mathrm{x}+\mathrm{1}}−\frac{\mathrm{2}}{\mathrm{sec}\:\mathrm{x}+\mathrm{1}} \\ $$$$=\mathrm{1}−\frac{\mathrm{2}}{\mathrm{sec}\:\mathrm{x}+\mathrm{1}} \\ $$$$=\mathrm{1}−\mathrm{2}\left(\mathrm{sec}\:\mathrm{x}+\mathrm{1}\right)^{−\mathrm{1}} \\ $$$$\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{1}−\mathrm{2}\left(\mathrm{sec}\:\mathrm{x}+\mathrm{1}\right)^{−\mathrm{1}} \right) \\ $$$$=−\mathrm{2}\left(−\mathrm{1}\left(\mathrm{sec}\:\mathrm{x}+\mathrm{1}\right)^{−\mathrm{2}} \right)\left(\mathrm{sec}\:\mathrm{x}\:\mathrm{tan}\:\mathrm{x}\right) \\ $$$$=\frac{\mathrm{2}\:\mathrm{sec}\:\mathrm{x}\:\mathrm{tan}\:\mathrm{x}}{\left(\mathrm{sec}\:\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 19646    Answers: 0   Comments: 1

Find the sum of all possible digits that comes at ten′s place for 3^n where n is any natural number.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{digits}\:\mathrm{that} \\ $$$$\mathrm{comes}\:\mathrm{at}\:\mathrm{ten}'\mathrm{s}\:\mathrm{place}\:\mathrm{for}\:\mathrm{3}^{{n}} \:\mathrm{where}\:{n}\:\mathrm{is} \\ $$$$\mathrm{any}\:\mathrm{natural}\:\mathrm{number}. \\ $$

Question Number 19638    Answers: 1   Comments: 0

Let P(x) is a polynomial such that P(1) = 1, P(2) = 2, P(3) = 3, and P(4) = 5. Find the value of P(6).

$$\mathrm{Let}\:{P}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{such}\:\mathrm{that} \\ $$$${P}\left(\mathrm{1}\right)\:=\:\mathrm{1},\:{P}\left(\mathrm{2}\right)\:=\:\mathrm{2},\:{P}\left(\mathrm{3}\right)\:=\:\mathrm{3},\:\mathrm{and} \\ $$$${P}\left(\mathrm{4}\right)\:=\:\mathrm{5}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{P}\left(\mathrm{6}\right). \\ $$

Question Number 19637    Answers: 1   Comments: 0

Determine the number of five-digit integers (37abc) in base 10 such that each of the numbers (37abc), (37bca) and 37cab is divisible by 37.

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{five}-\mathrm{digit} \\ $$$$\mathrm{integers}\:\left(\mathrm{37}{abc}\right)\:\mathrm{in}\:\mathrm{base}\:\mathrm{10}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{numbers}\:\left(\mathrm{37}{abc}\right),\:\left(\mathrm{37}{bca}\right) \\ $$$$\mathrm{and}\:\mathrm{37}{cab}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{37}. \\ $$

Question Number 19634    Answers: 1   Comments: 0

How many ordered triplets (x, y, z) of positive integer satisfy lcm(x, y) = 72, lcm(x, z) = 600 and lcm(y, z) = 900?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{ordered}\:\mathrm{triplets}\:\left({x},\:{y},\:{z}\right)\:\mathrm{of} \\ $$$$\mathrm{positive}\:\mathrm{integer}\:\mathrm{satisfy}\:\mathrm{lcm}\left({x},\:{y}\right)\:=\:\mathrm{72}, \\ $$$$\mathrm{lcm}\left({x},\:{z}\right)\:=\:\mathrm{600}\:\mathrm{and}\:\mathrm{lcm}\left({y},\:{z}\right)\:=\:\mathrm{900}? \\ $$

Question Number 19643    Answers: 1   Comments: 0

Find the real solution of the equation (√(17 + 8x − 2x^2 )) + (√(4 + 12x − 3x^2 )) = x^2 − 4x + 13.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{real}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\sqrt{\mathrm{17}\:+\:\mathrm{8}{x}\:−\:\mathrm{2}{x}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{4}\:+\:\mathrm{12}{x}\:−\:\mathrm{3}{x}^{\mathrm{2}} }\:=\:{x}^{\mathrm{2}} \\ $$$$−\:\mathrm{4}{x}\:+\:\mathrm{13}. \\ $$

Question Number 19631    Answers: 1   Comments: 0

Two different prime numbers between 4 and 18 are chosen. When their sum is subtracted from their product then a number x is obtained which is a multiple of 17. Find the sum of digits of number x.

$$\mathrm{Two}\:\mathrm{different}\:\mathrm{prime}\:\mathrm{numbers}\:\mathrm{between} \\ $$$$\mathrm{4}\:\mathrm{and}\:\mathrm{18}\:\mathrm{are}\:\mathrm{chosen}.\:\mathrm{When}\:\mathrm{their}\:\mathrm{sum}\:\mathrm{is} \\ $$$$\mathrm{subtracted}\:\mathrm{from}\:\mathrm{their}\:\mathrm{product}\:\mathrm{then}\:\mathrm{a} \\ $$$$\mathrm{number}\:{x}\:\mathrm{is}\:\mathrm{obtained}\:\mathrm{which}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{multiple}\:\mathrm{of}\:\mathrm{17}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{digits}\:\mathrm{of} \\ $$$$\mathrm{number}\:{x}. \\ $$

Question Number 19629    Answers: 1   Comments: 0

If ∣z∣ = 2, then the points representing the complex numbers −1 + 5z will lie on a (1) Circle (2) Straight line (3) Parabola (4) Ellipse

$$\mathrm{If}\:\mid{z}\mid\:=\:\mathrm{2},\:\mathrm{then}\:\mathrm{the}\:\mathrm{points}\:\mathrm{representing} \\ $$$$\mathrm{the}\:\mathrm{complex}\:\mathrm{numbers}\:−\mathrm{1}\:+\:\mathrm{5}{z}\:\mathrm{will}\:\mathrm{lie} \\ $$$$\mathrm{on}\:\mathrm{a} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Circle} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Straight}\:\mathrm{line} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Parabola} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Ellipse} \\ $$

Question Number 19623    Answers: 1   Comments: 0

Find the locus of z if arg(((z − 2)/(z − 3))) = (π/4)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:{z}\:\mathrm{if}\:\mathrm{arg}\left(\frac{{z}\:−\:\mathrm{2}}{{z}\:−\:\mathrm{3}}\right)\:=\:\frac{\pi}{\mathrm{4}} \\ $$

Question Number 19615    Answers: 1   Comments: 0

Question Number 19610    Answers: 1   Comments: 2

Prove that the radius of a circle passing through the midpoints of the sides of a triangle ABC is half the radius of a circle circum- scribed about the triangle.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle} \\ $$$$\mathrm{passing}\:\mathrm{through}\:\mathrm{the}\:\mathrm{midpoints} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{is} \\ $$$$\mathrm{half}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{circum}- \\ $$$$\mathrm{scribed}\:\mathrm{about}\:\mathrm{the}\:\mathrm{triangle}. \\ $$

Question Number 19609    Answers: 1   Comments: 0

Question Number 19604    Answers: 1   Comments: 1

Question Number 19595    Answers: 1   Comments: 1

For x ∈ R, solve the equation below! (2^x − 4)^3 + (4^x − 2)^3 = (4^x + 2^x − 6)^3

$$\mathrm{For}\:{x}\:\in\:\mathrm{R},\:\mathrm{solve}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{below}! \\ $$$$\left(\mathrm{2}^{{x}} \:−\:\mathrm{4}\right)^{\mathrm{3}} \:+\:\left(\mathrm{4}^{{x}} \:−\:\mathrm{2}\right)^{\mathrm{3}} \:=\:\left(\mathrm{4}^{{x}} \:+\:\mathrm{2}^{{x}} \:−\:\mathrm{6}\right)^{\mathrm{3}} \\ $$

Question Number 19592    Answers: 0   Comments: 2

Question Number 19589    Answers: 1   Comments: 0

Let A and B is 3×3 matrix of equal number where A=symmetric matrix ....B=skew symmetric matrix and the relation... (A+B)(A−B)=(A−B)(A+B) then..the value of.. ... k (AB)^T =(−1)^k (AB) (a) −1 (c) 2 (b) 1 (d) 3

$${Let}\:{A}\:{and}\:{B}\:{is}\:\mathrm{3}×\mathrm{3}\:{matrix}\:{of}\:{equal}\:{number} \\ $$$${where}\:{A}={symmetric}\:{matrix}\: \\ $$$$....{B}={skew}\:{symmetric}\:{matrix} \\ $$$${and}\:{the}\:{relation}...\:\left({A}+{B}\right)\left({A}−{B}\right)=\left({A}−{B}\right)\left({A}+{B}\right) \\ $$$${then}..{the}\:{value}\:{of}..\:...\:{k} \\ $$$$\:\:\:\:\left({AB}\right)^{{T}} =\left(−\mathrm{1}\right)^{{k}} \left({AB}\right) \\ $$$$\left({a}\right)\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({c}\right)\:\mathrm{2} \\ $$$$ \\ $$$$\left({b}\right)\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({d}\right)\:\mathrm{3} \\ $$

Question Number 19588    Answers: 0   Comments: 0

Question Number 19586    Answers: 0   Comments: 4

Given in an isosceles triangle a lateral side b and the base angle α. Compute the distance from the centre of the inscribed circle to the centre of the circumscribed circle.

$$\mathrm{Given}\:\mathrm{in}\:\mathrm{an}\:\mathrm{isosceles}\:\mathrm{triangle}\:\mathrm{a} \\ $$$$\mathrm{lateral}\:\mathrm{side}\:\mathrm{b}\:\mathrm{and}\:\mathrm{the}\:\mathrm{base}\:\mathrm{angle}\:\alpha. \\ $$$$\mathrm{Compute}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{inscribed}\:\mathrm{circle}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circumscribed}\:\mathrm{circle}. \\ $$

Question Number 19574    Answers: 0   Comments: 5

Carol was given three numbers and was asked to add the largest of the three to the product of the other two. Instead, she multiplied the largest with the sum of the other two, but still got the right answer. What is the sum of the three numbers?

$$\mathrm{Carol}\:\mathrm{was}\:\mathrm{given}\:\mathrm{three}\:\mathrm{numbers}\:\mathrm{and} \\ $$$$\mathrm{was}\:\mathrm{asked}\:\mathrm{to}\:\mathrm{add}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{three}\:\mathrm{to}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{two}. \\ $$$$\mathrm{Instead},\:\mathrm{she}\:\mathrm{multiplied}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{two},\:\mathrm{but}\:\mathrm{still}\:\mathrm{got} \\ $$$$\mathrm{the}\:\mathrm{right}\:\mathrm{answer}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{three}\:\mathrm{numbers}? \\ $$

Question Number 19657    Answers: 0   Comments: 2

differentiate the function with respect to x 1. ((secx−1)/(secx+1))

$${differentiate}\:{the}\:{function}\:{with}\:{respect}\: \\ $$$${to}\:{x} \\ $$$$\mathrm{1}.\:\:\:\:\frac{{secx}−\mathrm{1}}{{secx}+\mathrm{1}} \\ $$

  Pg 1893      Pg 1894      Pg 1895      Pg 1896      Pg 1897      Pg 1898      Pg 1899      Pg 1900      Pg 1901      Pg 1902   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com