Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1895

Question Number 20156    Answers: 1   Comments: 0

Solve: inverse laplace. L^(−1) ((s/(s^(2 ) + 6s + 25)))

$$\mathrm{Solve}:\:\mathrm{inverse}\:\mathrm{laplace}.\:\:\:\:\mathrm{L}^{−\mathrm{1}} \left(\frac{\mathrm{s}}{\mathrm{s}^{\mathrm{2}\:} +\:\mathrm{6s}\:+\:\mathrm{25}}\right) \\ $$

Question Number 20149    Answers: 2   Comments: 1

Question Number 20162    Answers: 1   Comments: 0

Compute the volume of a solid bounded by a surface with equation (x^2 +y^2 +z^2 )^2 =a^3 x .

$${Compute}\:{the}\:{volume}\:{of}\:{a}\:{solid} \\ $$$${bounded}\:{by}\:{a}\:{surface}\:{with}\:{equation} \\ $$$$\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{\mathrm{2}} ={a}^{\mathrm{3}} {x}\:. \\ $$

Question Number 20138    Answers: 1   Comments: 0

lim_(x→0) ((1−cos ax)/(1−cos bx))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:{ax}}{\mathrm{1}−\mathrm{cos}\:{bx}} \\ $$$$ \\ $$

Question Number 20118    Answers: 1   Comments: 0

The quadratic equations x^2 − 6x + a = 0 and x^2 − cx + 6 = 0 have one root in common. The other roots of the first and second equations are integers in the ratio 4 : 3. Then, find the common root.

$$\mathrm{The}\:\mathrm{quadratic}\:\mathrm{equations}\:{x}^{\mathrm{2}} \:−\:\mathrm{6}{x}\:+\:{a}\:=\:\mathrm{0} \\ $$$$\mathrm{and}\:{x}^{\mathrm{2}} \:−\:{cx}\:+\:\mathrm{6}\:=\:\mathrm{0}\:\mathrm{have}\:\mathrm{one}\:\mathrm{root}\:\mathrm{in} \\ $$$$\mathrm{common}.\:\mathrm{The}\:\mathrm{other}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first} \\ $$$$\mathrm{and}\:\mathrm{second}\:\mathrm{equations}\:\mathrm{are}\:\mathrm{integers}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{ratio}\:\mathrm{4}\::\:\mathrm{3}.\:\mathrm{Then},\:\mathrm{find}\:\mathrm{the}\:\mathrm{common} \\ $$$$\mathrm{root}. \\ $$

Question Number 20116    Answers: 1   Comments: 0

If a and b (≠ 0) are the roots of the equation x^2 + ax + b = 0, then find the least value of x^2 + ax + b (x ∈ R).

$$\mathrm{If}\:{a}\:\mathrm{and}\:{b}\:\left(\neq\:\mathrm{0}\right)\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:{x}^{\mathrm{2}} \:+\:{ax}\:+\:{b}\:=\:\mathrm{0},\:\mathrm{then}\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{least}\:\mathrm{value}\:\mathrm{of}\:{x}^{\mathrm{2}} \:+\:{ax}\:+\:{b}\:\left({x}\:\in\:{R}\right). \\ $$

Question Number 20115    Answers: 1   Comments: 0

The value of a for which the equation (1 − a^2 )x^2 + 2ax − 1 = 0 has roots belonging to (0, 1) is

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:{a}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\left(\mathrm{1}\:−\:{a}^{\mathrm{2}} \right){x}^{\mathrm{2}} \:+\:\mathrm{2}{ax}\:−\:\mathrm{1}\:=\:\mathrm{0}\:\mathrm{has}\:\mathrm{roots} \\ $$$$\mathrm{belonging}\:\mathrm{to}\:\left(\mathrm{0},\:\mathrm{1}\right)\:\mathrm{is} \\ $$

Question Number 20110    Answers: 0   Comments: 1

Question Number 20102    Answers: 2   Comments: 0

Solve the equation: (log _(sin x) cos x)^2 =1

$${Solve}\:{the}\:{equation}: \\ $$$$\left(\mathrm{log}\:_{\mathrm{sin}\:{x}} \mathrm{cos}\:{x}\right)^{\mathrm{2}} =\mathrm{1} \\ $$

Question Number 20091    Answers: 1   Comments: 0

Prove that Σ_(n=0) ^3 tan^2 (((2n + 1)π)/(16)) = 28.

$$\mathrm{Prove}\:\mathrm{that}\:\underset{{n}=\mathrm{0}} {\overset{\mathrm{3}} {\sum}}\mathrm{tan}^{\mathrm{2}} \:\frac{\left(\mathrm{2}{n}\:+\:\mathrm{1}\right)\pi}{\mathrm{16}}\:=\:\mathrm{28}. \\ $$

Question Number 20079    Answers: 0   Comments: 2

Question Number 20068    Answers: 1   Comments: 1

Question Number 20058    Answers: 1   Comments: 0

What is the difference between ∮ and ∫? Where is ∮ used?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{difference}\:\mathrm{between}\:\oint\:\mathrm{and} \\ $$$$\int?\:\mathrm{Where}\:\mathrm{is}\:\oint\:\mathrm{used}? \\ $$

Question Number 20054    Answers: 1   Comments: 0

If α and β (α < β) are the roots of the equation x^2 + bx + c = 0, where c < 0 < b, then (1) 0 < α < β (2) α < 0 < β < ∣α∣ (3) α < β < 0 (4) α < 0 < ∣α∣ < β

$$\mathrm{If}\:\alpha\:\mathrm{and}\:\beta\:\left(\alpha\:<\:\beta\right)\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:{x}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0},\:\mathrm{where} \\ $$$${c}\:<\:\mathrm{0}\:<\:{b},\:\mathrm{then} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{0}\:<\:\alpha\:<\:\beta \\ $$$$\left(\mathrm{2}\right)\:\alpha\:<\:\mathrm{0}\:<\:\beta\:<\:\mid\alpha\mid \\ $$$$\left(\mathrm{3}\right)\:\alpha\:<\:\beta\:<\:\mathrm{0} \\ $$$$\left(\mathrm{4}\right)\:\alpha\:<\:\mathrm{0}\:<\:\mid\alpha\mid\:<\:\beta \\ $$

Question Number 20053    Answers: 1   Comments: 0

If (4a + c)^2 ≤ 4b^2 then one root of ax^2 + bx + c = 0 lies in (1) (−2, 2) (2) (−1, 1) (3) (−∞, −2) (4) (2, ∞)

$$\mathrm{If}\:\left(\mathrm{4}{a}\:+\:{c}\right)^{\mathrm{2}} \:\leqslant\:\mathrm{4}{b}^{\mathrm{2}} \:\mathrm{then}\:\mathrm{one}\:\mathrm{root}\:\mathrm{of} \\ $$$${ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{lies}\:\mathrm{in} \\ $$$$\left(\mathrm{1}\right)\:\left(−\mathrm{2},\:\mathrm{2}\right) \\ $$$$\left(\mathrm{2}\right)\:\left(−\mathrm{1},\:\mathrm{1}\right) \\ $$$$\left(\mathrm{3}\right)\:\left(−\infty,\:−\mathrm{2}\right) \\ $$$$\left(\mathrm{4}\right)\:\left(\mathrm{2},\:\infty\right) \\ $$

Question Number 20052    Answers: 1   Comments: 0

If the roots α and β of the equation ax^2 + bx + c = 0 are real and of opposite sign then the roots of the equation α(x − β)^2 + β(x − α)^2 is/are (1) Positive (2) Negative (3) Real and opposite sign (4) Imaginary

$$\mathrm{If}\:\mathrm{the}\:\mathrm{roots}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$${ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{are}\:\mathrm{real}\:\mathrm{and}\:\mathrm{of}\:\mathrm{opposite} \\ $$$$\mathrm{sign}\:\mathrm{then}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\alpha\left({x}\:−\:\beta\right)^{\mathrm{2}} \:+\:\beta\left({x}\:−\:\alpha\right)^{\mathrm{2}} \:\mathrm{is}/\mathrm{are} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Positive} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Negative} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Real}\:\mathrm{and}\:\mathrm{opposite}\:\mathrm{sign} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Imaginary} \\ $$

Question Number 20049    Answers: 0   Comments: 0

$$ \\ $$

Question Number 20047    Answers: 1   Comments: 0

Solve for x: ((√(x + 1))/x) + (√(x/(x + 1))) = ((13)/6)

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}: \\ $$$$\frac{\sqrt{\mathrm{x}\:+\:\mathrm{1}}}{\mathrm{x}}\:+\:\sqrt{\frac{\mathrm{x}}{\mathrm{x}\:+\:\mathrm{1}}}\:=\:\frac{\mathrm{13}}{\mathrm{6}} \\ $$

Question Number 20042    Answers: 0   Comments: 3

In the situation given, all surfaces are frictionless, pulley is ideal and string is light, F = ((mg)/2) , find the acceleration of block 2.

$$\mathrm{In}\:\mathrm{the}\:\mathrm{situation}\:\mathrm{given},\:\mathrm{all}\:\mathrm{surfaces}\:\mathrm{are} \\ $$$$\mathrm{frictionless},\:\mathrm{pulley}\:\mathrm{is}\:\mathrm{ideal}\:\mathrm{and}\:\mathrm{string}\:\mathrm{is} \\ $$$$\mathrm{light},\:{F}\:=\:\frac{{mg}}{\mathrm{2}}\:,\:\mathrm{find}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of} \\ $$$$\mathrm{block}\:\mathrm{2}. \\ $$

Question Number 20040    Answers: 0   Comments: 3

The system shown in figure is given an acceleration ′a′ toward left. Assuming all the surfaces to be frictionless, find the force on the sphere by inclined surface.

$$\mathrm{The}\:\mathrm{system}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{figure}\:\mathrm{is}\:\mathrm{given}\:\mathrm{an} \\ $$$$\mathrm{acceleration}\:'{a}'\:\mathrm{toward}\:\mathrm{left}.\:\mathrm{Assuming} \\ $$$$\mathrm{all}\:\mathrm{the}\:\mathrm{surfaces}\:\mathrm{to}\:\mathrm{be}\:\mathrm{frictionless},\:\mathrm{find} \\ $$$$\mathrm{the}\:\mathrm{force}\:\mathrm{on}\:\mathrm{the}\:\mathrm{sphere}\:\mathrm{by}\:\mathrm{inclined} \\ $$$$\mathrm{surface}. \\ $$

Question Number 20038    Answers: 1   Comments: 1

In the figure shown, m slides on inclined surface of wedge M. If velocity of wedge at any instant be v, find velocity of m with respect to ground.

$$\mathrm{In}\:\mathrm{the}\:\mathrm{figure}\:\mathrm{shown},\:{m}\:\mathrm{slides}\:\mathrm{on} \\ $$$$\mathrm{inclined}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{wedge}\:{M}.\:\mathrm{If}\:\mathrm{velocity} \\ $$$$\mathrm{of}\:\mathrm{wedge}\:\mathrm{at}\:\mathrm{any}\:\mathrm{instant}\:\mathrm{be}\:{v},\:\mathrm{find} \\ $$$$\mathrm{velocity}\:\mathrm{of}\:{m}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{ground}. \\ $$

Question Number 20036    Answers: 1   Comments: 0

Question Number 20031    Answers: 1   Comments: 0

Question Number 20035    Answers: 1   Comments: 1

In the following cases, find out the acceleration of the wedge and the block, if an external force F is applied as shown. (Both pulleys and strings are ideal)

$$\mathrm{In}\:\mathrm{the}\:\mathrm{following}\:\mathrm{cases},\:\mathrm{find}\:\mathrm{out}\:\mathrm{the} \\ $$$$\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{wedge}\:\mathrm{and}\:\mathrm{the}\:\mathrm{block}, \\ $$$$\mathrm{if}\:\mathrm{an}\:\mathrm{external}\:\mathrm{force}\:{F}\:\mathrm{is}\:\mathrm{applied}\:\mathrm{as} \\ $$$$\mathrm{shown}.\:\left(\mathrm{Both}\:\mathrm{pulleys}\:\mathrm{and}\:\mathrm{strings}\:\mathrm{are}\right. \\ $$$$\left.\mathrm{ideal}\right) \\ $$

Question Number 20051    Answers: 1   Comments: 0

If x ∈ R then ((x^2 + 2x + a)/(x^2 + 4x + 3a)) can take all real values if (1) a ∈ (0, 2) (2) a ∈ [0, 1] (3) a ∈ [−1, 1] (4) None of these

$$\mathrm{If}\:{x}\:\in\:{R}\:\mathrm{then}\:\frac{{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:+\:{a}}{{x}^{\mathrm{2}} \:+\:\mathrm{4}{x}\:+\:\mathrm{3}{a}}\:\mathrm{can}\:\mathrm{take}\:\mathrm{all} \\ $$$$\mathrm{real}\:\mathrm{values}\:\mathrm{if} \\ $$$$\left(\mathrm{1}\right)\:{a}\:\in\:\left(\mathrm{0},\:\mathrm{2}\right) \\ $$$$\left(\mathrm{2}\right)\:{a}\:\in\:\left[\mathrm{0},\:\mathrm{1}\right] \\ $$$$\left(\mathrm{3}\right)\:{a}\:\in\:\left[−\mathrm{1},\:\mathrm{1}\right] \\ $$$$\left(\mathrm{4}\right)\:\mathrm{None}\:\mathrm{of}\:\mathrm{these} \\ $$

Question Number 20021    Answers: 1   Comments: 0

A person observes the angle of elevation of the peak of a hill from a station to be α. He walks c metres along a slope inclined at the angle β and finds the angle of elevation of the peak of the hill to be γ. Show that the height of the peak above the ground is ((c sin α sin (γ − β))/((sin γ − α))).

$$\mathrm{A}\:\mathrm{person}\:\mathrm{observes}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{elevation} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{peak}\:\mathrm{of}\:\mathrm{a}\:\mathrm{hill}\:\mathrm{from}\:\mathrm{a}\:\mathrm{station}\:\mathrm{to}\:\mathrm{be} \\ $$$$\alpha.\:\mathrm{He}\:\mathrm{walks}\:{c}\:\mathrm{metres}\:\mathrm{along}\:\mathrm{a}\:\mathrm{slope} \\ $$$$\mathrm{inclined}\:\mathrm{at}\:\mathrm{the}\:\mathrm{angle}\:\beta\:\mathrm{and}\:\mathrm{finds}\:\mathrm{the} \\ $$$$\mathrm{angle}\:\mathrm{of}\:\mathrm{elevation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{peak}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{hill}\:\mathrm{to}\:\mathrm{be}\:\gamma.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{height}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{peak}\:\mathrm{above}\:\mathrm{the}\:\mathrm{ground}\:\mathrm{is} \\ $$$$\frac{{c}\:\mathrm{sin}\:\alpha\:\mathrm{sin}\:\left(\gamma\:−\:\beta\right)}{\left(\mathrm{sin}\:\gamma\:−\:\alpha\right)}. \\ $$

  Pg 1890      Pg 1891      Pg 1892      Pg 1893      Pg 1894      Pg 1895      Pg 1896      Pg 1897      Pg 1898      Pg 1899   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com