Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1895

Question Number 19140    Answers: 0   Comments: 9

A racing car travels on a track (without banking) ABCDEFA. ABC is a circular arc of radius 2R. CD and FA are straight paths of length R and DEF is a circular arc of radius R = 100 m. The co-efficient of friction on the road is μ = 0.1. The maximum speed of the car is 50 ms^(−1) . Find the minimum time for completing one round.

$$\mathrm{A}\:\mathrm{racing}\:\mathrm{car}\:\mathrm{travels}\:\mathrm{on}\:\mathrm{a}\:\mathrm{track}\:\left(\mathrm{without}\right. \\ $$$$\left.\mathrm{banking}\right)\:{ABCDEFA}.\:{ABC}\:\mathrm{is}\:\mathrm{a}\:\mathrm{circular} \\ $$$$\mathrm{arc}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{2}{R}.\:{CD}\:\mathrm{and}\:{FA}\:\mathrm{are} \\ $$$$\mathrm{straight}\:\mathrm{paths}\:\mathrm{of}\:\mathrm{length}\:{R}\:\mathrm{and}\:{DEF}\:\mathrm{is} \\ $$$$\mathrm{a}\:\mathrm{circular}\:\mathrm{arc}\:\mathrm{of}\:\mathrm{radius}\:{R}\:=\:\mathrm{100}\:\mathrm{m}.\:\mathrm{The} \\ $$$$\mathrm{co}-\mathrm{efficient}\:\mathrm{of}\:\mathrm{friction}\:\mathrm{on}\:\mathrm{the}\:\mathrm{road}\:\mathrm{is}\:\mu\:= \\ $$$$\mathrm{0}.\mathrm{1}.\:\mathrm{The}\:\mathrm{maximum}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{car}\:\mathrm{is} \\ $$$$\mathrm{50}\:\mathrm{ms}^{−\mathrm{1}} .\:\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{time}\:\mathrm{for} \\ $$$$\mathrm{completing}\:\mathrm{one}\:\mathrm{round}. \\ $$

Question Number 19137    Answers: 1   Comments: 1

Figure shows (x, t), (y, t) diagram of a particle moving in 2-dimensions. If the particle has a mass of 500 g, find the force (direction and magnitude) acting on the particle.

$$\mathrm{Figure}\:\mathrm{shows}\:\left({x},\:{t}\right),\:\left({y},\:{t}\right)\:\mathrm{diagram}\:\mathrm{of}\:\mathrm{a} \\ $$$$\mathrm{particle}\:\mathrm{moving}\:\mathrm{in}\:\mathrm{2}-\mathrm{dimensions}.\:\mathrm{If}\:\mathrm{the} \\ $$$$\mathrm{particle}\:\mathrm{has}\:\mathrm{a}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{500}\:\mathrm{g},\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{force}\:\left(\mathrm{direction}\:\mathrm{and}\:\mathrm{magnitude}\right)\:\mathrm{acting} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{particle}. \\ $$

Question Number 19135    Answers: 1   Comments: 0

solve for x: 2^(∣x+2∣) −∣2^(x+1) −1∣=2^(x+1) +1

$${solve}\:{for}\:{x}: \\ $$$$\mathrm{2}^{\mid{x}+\mathrm{2}\mid} −\mid\mathrm{2}^{{x}+\mathrm{1}} −\mathrm{1}\mid=\mathrm{2}^{{x}+\mathrm{1}} +\mathrm{1} \\ $$

Question Number 19134    Answers: 1   Comments: 0

If (1/((243)^x )) = (729)^y = 3^3 , then find the value of 5x + 6y.

$$\mathrm{If}\:\frac{\mathrm{1}}{\left(\mathrm{243}\right)^{{x}} }\:=\:\left(\mathrm{729}\right)^{{y}} =\:\mathrm{3}^{\mathrm{3}} ,\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\mathrm{value}\:\mathrm{of}\:\:\mathrm{5}{x}\:+\:\mathrm{6}{y}. \\ $$

Question Number 19127    Answers: 0   Comments: 0

Question Number 19123    Answers: 1   Comments: 0

{ ((xf(x)−g(x)+h(x)=2x+1)),((f(x)−(2x−2)g(x)−3h(x)=x)),((ln (x)f(x)−(x−3)h(x)=1)) :} Find f(x),g(x),h(x)

$$\begin{cases}{\mathrm{xf}\left(\mathrm{x}\right)−\mathrm{g}\left(\mathrm{x}\right)+\mathrm{h}\left(\mathrm{x}\right)=\mathrm{2x}+\mathrm{1}}\\{\mathrm{f}\left(\mathrm{x}\right)−\left(\mathrm{2x}−\mathrm{2}\right)\mathrm{g}\left(\mathrm{x}\right)−\mathrm{3h}\left(\mathrm{x}\right)=\mathrm{x}}\\{\mathrm{ln}\:\left(\mathrm{x}\right)\mathrm{f}\left(\mathrm{x}\right)−\left(\mathrm{x}−\mathrm{3}\right)\mathrm{h}\left(\mathrm{x}\right)=\mathrm{1}}\end{cases} \\ $$$$\mathrm{Find}\:\mathrm{f}\left(\mathrm{x}\right),\mathrm{g}\left(\mathrm{x}\right),\mathrm{h}\left(\mathrm{x}\right) \\ $$

Question Number 19122    Answers: 1   Comments: 0

Prove that r_1 + r_2 + r_3 = 4R + r

$$\mathrm{Prove}\:\mathrm{that}\:{r}_{\mathrm{1}} \:+\:{r}_{\mathrm{2}} \:+\:{r}_{\mathrm{3}} \:=\:\mathrm{4}{R}\:+\:{r} \\ $$

Question Number 19121    Answers: 0   Comments: 0

Question Number 19118    Answers: 0   Comments: 0

Question Number 19104    Answers: 1   Comments: 1

Let ABC be an acute-angled triangle with AC ≠ BC and let O be the circumcenter and F be the foot of altitude through C. Further, let X and Y be the feet of perpendiculars dropped from A and B respectively to (the extension of) CO. The line FO intersects the circumcircle of ΔFXY, second time at P. Prove that OP < OF.

$$\mathrm{Let}\:\mathrm{ABC}\:\mathrm{be}\:\mathrm{an}\:\mathrm{acute}-\mathrm{angled}\:\mathrm{triangle} \\ $$$$\mathrm{with}\:\mathrm{AC}\:\neq\:\mathrm{BC}\:\mathrm{and}\:\mathrm{let}\:\mathrm{O}\:\mathrm{be}\:\mathrm{the} \\ $$$$\mathrm{circumcenter}\:\mathrm{and}\:\mathrm{F}\:\mathrm{be}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of} \\ $$$$\mathrm{altitude}\:\mathrm{through}\:\mathrm{C}.\:\mathrm{Further},\:\mathrm{let}\:\mathrm{X}\:\mathrm{and}\:\mathrm{Y} \\ $$$$\mathrm{be}\:\mathrm{the}\:\mathrm{feet}\:\mathrm{of}\:\mathrm{perpendiculars}\:\mathrm{dropped} \\ $$$$\mathrm{from}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{respectively}\:\mathrm{to}\:\left(\mathrm{the}\right. \\ $$$$\left.\mathrm{extension}\:\mathrm{of}\right)\:\mathrm{CO}.\:\mathrm{The}\:\mathrm{line}\:\mathrm{FO}\:\mathrm{intersects} \\ $$$$\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{of}\:\Delta\mathrm{FXY},\:\mathrm{second}\:\mathrm{time} \\ $$$$\mathrm{at}\:\mathrm{P}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{OP}\:<\:\mathrm{OF}. \\ $$

Question Number 19101    Answers: 0   Comments: 3

A polynomial f(x) with rational coefficients leaves remainder 15, when divided by x − 3 and remainder 2x + 1, when divided by (x − 1)^2 . Find the remainder when f(x) is divided by (x − 3)(x − 1)^2 .

$$\mathrm{A}\:\mathrm{polynomial}\:{f}\left({x}\right)\:\mathrm{with}\:\mathrm{rational} \\ $$$$\mathrm{coefficients}\:\mathrm{leaves}\:\mathrm{remainder}\:\mathrm{15},\:\mathrm{when} \\ $$$$\mathrm{divided}\:\mathrm{by}\:{x}\:−\:\mathrm{3}\:\mathrm{and}\:\mathrm{remainder}\:\mathrm{2}{x}\:+\:\mathrm{1}, \\ $$$$\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\left({x}\:−\:\mathrm{1}\right)^{\mathrm{2}} .\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{remainder}\:\mathrm{when}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by} \\ $$$$\left({x}\:−\:\mathrm{3}\right)\left({x}\:−\:\mathrm{1}\right)^{\mathrm{2}} . \\ $$

Question Number 19097    Answers: 1   Comments: 0

If tan ((π/4) + x) = tan^3 ((π/4) + α) then prove that cosec 2x = ((1 + 3 sin^2 2α)/(3 sin 2α + sin^3 2α))

$$\mathrm{If}\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}\:+\:{x}\right)\:=\:\mathrm{tan}^{\mathrm{3}} \:\left(\frac{\pi}{\mathrm{4}}\:+\:\alpha\right)\:\mathrm{then} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{cosec}\:\mathrm{2}{x}\:=\:\frac{\mathrm{1}\:+\:\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:\mathrm{2}\alpha}{\mathrm{3}\:\mathrm{sin}\:\mathrm{2}\alpha\:+\:\mathrm{sin}^{\mathrm{3}} \:\mathrm{2}\alpha} \\ $$

Question Number 19095    Answers: 0   Comments: 3

Question Number 19085    Answers: 0   Comments: 0

f_n (x)=(√(f_(n−1) (x)×(f_(n−1) (x))′)) f_1 (x)=x^(2017) +x^8 +x^4 lim_(n→∞) f_n (x)=?

$$\mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)=\sqrt{\mathrm{f}_{\mathrm{n}−\mathrm{1}} \left(\mathrm{x}\right)×\left(\mathrm{f}_{\mathrm{n}−\mathrm{1}} \left(\mathrm{x}\right)\right)'} \\ $$$$\mathrm{f}_{\mathrm{1}} \left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2017}} +\mathrm{x}^{\mathrm{8}} +\mathrm{x}^{\mathrm{4}} \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}f}_{\mathrm{n}} \left(\mathrm{x}\right)=? \\ $$

Question Number 19083    Answers: 1   Comments: 4

Question Number 19080    Answers: 0   Comments: 1

Question Number 19064    Answers: 1   Comments: 2

Question Number 19063    Answers: 2   Comments: 0

find the possible values of x if ((8^x +27^x )/(12^x +18^x ))=(7/6)

$$\mathrm{find}\:\mathrm{the}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:\mathrm{if} \\ $$$$\frac{\mathrm{8}^{\mathrm{x}} +\mathrm{27}^{\mathrm{x}} }{\mathrm{12}^{\mathrm{x}} +\mathrm{18}^{\mathrm{x}} }=\frac{\mathrm{7}}{\mathrm{6}} \\ $$

Question Number 19058    Answers: 0   Comments: 0

Question Number 19055    Answers: 1   Comments: 0

Find the cubic equation whose roots are the radius of three escribed circles in term of inradius, circumradius and semiperimeter.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{cubic}\:\mathrm{equation}\:\mathrm{whose}\:\mathrm{roots} \\ $$$$\mathrm{are}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{three}\:\mathrm{escribed}\:\mathrm{circles} \\ $$$$\mathrm{in}\:\mathrm{term}\:\mathrm{of}\:\mathrm{inradius},\:\mathrm{circumradius}\:\mathrm{and} \\ $$$$\mathrm{semiperimeter}. \\ $$

Question Number 19033    Answers: 2   Comments: 1

Question Number 19073    Answers: 0   Comments: 0

Question Number 19025    Answers: 0   Comments: 0

Question Number 19077    Answers: 1   Comments: 0

∫ sec^3 x dx

$$\int\:\mathrm{sec}^{\mathrm{3}} \:{x}\:{dx} \\ $$

Question Number 19021    Answers: 0   Comments: 4

Question Number 19060    Answers: 1   Comments: 2

  Pg 1890      Pg 1891      Pg 1892      Pg 1893      Pg 1894      Pg 1895      Pg 1896      Pg 1897      Pg 1898      Pg 1899   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com