Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1894

Question Number 19341    Answers: 0   Comments: 2

Question Number 19476    Answers: 1   Comments: 0

STATEMENT-1 : The graph between kinetic energy and vertical displacement is a straight line for a projectile. STATEMENT-2 : The graph between kinetic energy and horizontal displacement is a straight line for a projectile. STATEMENT-3 : The graph between kinetic energy and time is a parabola for a projectile.

$$\mathrm{STATEMENT}-\mathrm{1}\::\:\mathrm{The}\:\mathrm{graph}\:\mathrm{between} \\ $$$$\mathrm{kinetic}\:\mathrm{energy}\:\mathrm{and}\:\mathrm{vertical}\:\mathrm{displacement} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:\mathrm{for}\:\mathrm{a}\:\mathrm{projectile}. \\ $$$$\mathrm{STATEMENT}-\mathrm{2}\::\:\mathrm{The}\:\mathrm{graph}\:\mathrm{between} \\ $$$$\mathrm{kinetic}\:\mathrm{energy}\:\mathrm{and}\:\mathrm{horizontal} \\ $$$$\mathrm{displacement}\:\mathrm{is}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:\mathrm{for}\:\mathrm{a} \\ $$$$\mathrm{projectile}. \\ $$$$\mathrm{STATEMENT}-\mathrm{3}\::\:\mathrm{The}\:\mathrm{graph}\:\mathrm{between} \\ $$$$\mathrm{kinetic}\:\mathrm{energy}\:\mathrm{and}\:\mathrm{time}\:\mathrm{is}\:\mathrm{a}\:\mathrm{parabola} \\ $$$$\mathrm{for}\:\mathrm{a}\:\mathrm{projectile}. \\ $$

Question Number 19332    Answers: 1   Comments: 1

Let S_n = n^2 + 20n + 12, n a positive integer. What is the sum of all possible values of n for which S_n is a perfect square?

$$\mathrm{Let}\:{S}_{{n}} \:=\:{n}^{\mathrm{2}} \:+\:\mathrm{20}{n}\:+\:\mathrm{12},\:{n}\:\mathrm{a}\:\mathrm{positive} \\ $$$$\mathrm{integer}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{possible} \\ $$$$\mathrm{values}\:\mathrm{of}\:{n}\:\mathrm{for}\:\mathrm{which}\:{S}_{{n}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{perfect} \\ $$$$\mathrm{square}? \\ $$

Question Number 19405    Answers: 1   Comments: 0

Convert i(√((2(√2)−1)/2)) into polarform.

$${Convert}\:{i}\sqrt{\frac{\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{2}}}\:{into}\:{polarform}. \\ $$

Question Number 19330    Answers: 1   Comments: 0

A triangle with perimeter 7 has integer side lengths. What is the maximum possible area of such a triangle?

$$\mathrm{A}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{perimeter}\:\mathrm{7}\:\mathrm{has}\:\mathrm{integer} \\ $$$$\mathrm{side}\:\mathrm{lengths}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum} \\ $$$$\mathrm{possible}\:\mathrm{area}\:\mathrm{of}\:\mathrm{such}\:\mathrm{a}\:\mathrm{triangle}? \\ $$

Question Number 19329    Answers: 0   Comments: 5

Solve the equation y^3 = x^3 + 8x^2 − 6x + 8 for positive integers x and y.

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\:{y}^{\mathrm{3}} \:=\:{x}^{\mathrm{3}} \:+\:\mathrm{8}{x}^{\mathrm{2}} \:−\:\mathrm{6}{x}\:+\:\mathrm{8} \\ $$$$\mathrm{for}\:\mathrm{positive}\:\mathrm{integers}\:{x}\:\mathrm{and}\:{y}. \\ $$

Question Number 19324    Answers: 0   Comments: 0

y=tan^(−1) 3a^2 x−x^3 /a(a^2 −3x^2 )

$$\mathrm{y}=\mathrm{tan}^{−\mathrm{1}} \mathrm{3a}^{\mathrm{2}} \mathrm{x}−\mathrm{x}^{\mathrm{3}} /\mathrm{a}\left(\mathrm{a}^{\mathrm{2}} −\mathrm{3x}^{\mathrm{2}} \right) \\ $$

Question Number 19323    Answers: 0   Comments: 0

y=sin (2tan^(−1) (√(1−x/1+x)))

$$\mathrm{y}=\mathrm{sin}\:\left(\mathrm{2tan}^{−\mathrm{1}} \sqrt{\left.\mathrm{1}−\mathrm{x}/\mathrm{1}+\mathrm{x}\right)}\right. \\ $$

Question Number 19313    Answers: 1   Comments: 0

Prove that ∣z_1 ± z_2 ∣^2 = ∣z_2 ∣^2 + ∣z_1 ∣^2 ± 2Re(z_1 z_2 ^ ) = ∣z_1 ∣^2 + ∣z_2 ∣^2 ± 2Re(z_1 ^ .z_2 )

$$\mathrm{Prove}\:\mathrm{that}\:\mid{z}_{\mathrm{1}} \:\pm\:{z}_{\mathrm{2}} \mid^{\mathrm{2}} \:=\:\mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} \:+\:\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} \:\pm \\ $$$$\mathrm{2Re}\left({z}_{\mathrm{1}} \bar {{z}}_{\mathrm{2}} \right)\:=\:\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} \:+\:\mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} \:\pm\:\mathrm{2Re}\left(\bar {{z}}_{\mathrm{1}} .{z}_{\mathrm{2}} \right) \\ $$

Question Number 19312    Answers: 1   Comments: 0

Product of n, n^(th) roots of unity = 1.α.α^2 .α^3 ..... α^(n−1) = (−1)^(n−1) Why? How to get RHS?

$$\mathrm{Product}\:\mathrm{of}\:{n},\:{n}^{\mathrm{th}} \:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity} \\ $$$$=\:\mathrm{1}.\alpha.\alpha^{\mathrm{2}} .\alpha^{\mathrm{3}} \:.....\:\alpha^{{n}−\mathrm{1}} \:=\:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \\ $$$$\mathrm{Why}?\:\mathrm{How}\:\mathrm{to}\:\mathrm{get}\:\mathrm{RHS}? \\ $$

Question Number 19321    Answers: 1   Comments: 1

Parallel tangents to a circle at A and B are cut in the points C and D by a tangent to the circle at E. Prove that AD, BC and the line joining the middle points of AE and BE are concurrent.

$$\mathrm{Parallel}\:\mathrm{tangents}\:\mathrm{to}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{at}\:\mathrm{A} \\ $$$$\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{cut}\:\mathrm{in}\:\mathrm{the}\:\mathrm{points}\:\mathrm{C}\:\mathrm{and}\:\mathrm{D} \\ $$$$\mathrm{by}\:\mathrm{a}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{at}\:\mathrm{E}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{AD},\:\mathrm{BC}\:\mathrm{and}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{joining}\:\mathrm{the}\:\mathrm{middle}\:\mathrm{points}\:\mathrm{of}\:\mathrm{AE} \\ $$$$\mathrm{and}\:\mathrm{BE}\:\mathrm{are}\:\mathrm{concurrent}. \\ $$

Question Number 19301    Answers: 1   Comments: 0

e^(iπ) +1=0

$${e}^{{i}\pi} +\mathrm{1}=\mathrm{0} \\ $$

Question Number 19325    Answers: 0   Comments: 0

xcos^(−1) x/(√(1−x^2 ))

$$\mathrm{xcos}^{−\mathrm{1}} \mathrm{x}/\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} } \\ $$

Question Number 19326    Answers: 0   Comments: 1

tan^(−1) ((√x)−x/1+x^(3/2) )

$$\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{x}}−\mathrm{x}/\mathrm{1}+\mathrm{x}^{\mathrm{3}/\mathrm{2}} \right) \\ $$

Question Number 19294    Answers: 1   Comments: 0

Question Number 19293    Answers: 1   Comments: 3

Let AC be a line segment in the plane and B a point between A and C. Construct isosceles triangles PAB and QBC on one side of the segment AC such that ∠APB = ∠BQC = 120° and an isosceles triangle RAC on the other side of AC such that ∠ARC = 120°. Show that PQR is an equilateral triangle.

$$\mathrm{Let}\:{AC}\:\mathrm{be}\:\mathrm{a}\:\mathrm{line}\:\mathrm{segment}\:\mathrm{in}\:\mathrm{the}\:\mathrm{plane} \\ $$$$\mathrm{and}\:{B}\:\mathrm{a}\:\mathrm{point}\:\mathrm{between}\:{A}\:\mathrm{and}\:{C}. \\ $$$$\mathrm{Construct}\:\mathrm{isosceles}\:\mathrm{triangles}\:{PAB}\:\mathrm{and} \\ $$$${QBC}\:\mathrm{on}\:\mathrm{one}\:\mathrm{side}\:\mathrm{of}\:\mathrm{the}\:\mathrm{segment}\:{AC} \\ $$$$\mathrm{such}\:\mathrm{that}\:\angle{APB}\:=\:\angle{BQC}\:=\:\mathrm{120}°\:\mathrm{and} \\ $$$$\mathrm{an}\:\mathrm{isosceles}\:\mathrm{triangle}\:{RAC}\:\mathrm{on}\:\mathrm{the}\:\mathrm{other} \\ $$$$\mathrm{side}\:\mathrm{of}\:{AC}\:\mathrm{such}\:\mathrm{that}\:\angle{ARC}\:=\:\mathrm{120}°. \\ $$$$\mathrm{Show}\:\mathrm{that}\:{PQR}\:\mathrm{is}\:\mathrm{an}\:\mathrm{equilateral} \\ $$$$\mathrm{triangle}. \\ $$

Question Number 19292    Answers: 1   Comments: 1

Prove the equality sin (π/(2n)) sin ((2π)/(2n)) ... sin (((n − 1)π)/(2n)) = ((√n)/2^(n−1) ) .

$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{equality} \\ $$$$\mathrm{sin}\:\frac{\pi}{\mathrm{2}{n}}\:\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{2}{n}}\:...\:\mathrm{sin}\:\frac{\left({n}\:−\:\mathrm{1}\right)\pi}{\mathrm{2}{n}}\:=\:\frac{\sqrt{{n}}}{\mathrm{2}^{{n}−\mathrm{1}} }\:. \\ $$

Question Number 19291    Answers: 1   Comments: 0

Prove that (1/(cos 6°)) + (1/(sin 24°)) + (1/(sin 48°)) = (1/(sin 12°)) .

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{6}°}\:+\:\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{24}°}\:+\:\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{48}°}\:=\:\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{12}°}\:. \\ $$

Question Number 19279    Answers: 0   Comments: 0

lim_(x→π) (((2x)/(cot(1/x))))

$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\left(\frac{\mathrm{2}{x}}{{cot}\frac{\mathrm{1}}{{x}}}\right) \\ $$

Question Number 19272    Answers: 0   Comments: 0

Question Number 19271    Answers: 1   Comments: 0

lim_(x→π) (2 − cos^2 x)^((2(√(2(1 + cos x))))/((x − π)^3 ))

$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\left(\mathrm{2}\:−\:\mathrm{cos}^{\mathrm{2}} \:{x}\right)^{\frac{\mathrm{2}\sqrt{\mathrm{2}\left(\mathrm{1}\:+\:\mathrm{cos}\:{x}\right)}}{\left({x}\:−\:\pi\right)^{\mathrm{3}} }} \\ $$

Question Number 19268    Answers: 1   Comments: 0

Question Number 19264    Answers: 1   Comments: 2

Question Number 19250    Answers: 0   Comments: 2

Why arg(z) + arg(z^ ) = 2kπ, k ∈ Z? Shouldn′t it be always 0?

$$\mathrm{Why}\:\mathrm{arg}\left({z}\right)\:+\:\mathrm{arg}\left(\bar {{z}}\right)\:=\:\mathrm{2}{k}\pi,\:{k}\:\in\:{Z}? \\ $$$$\mathrm{Shouldn}'\mathrm{t}\:\mathrm{it}\:\mathrm{be}\:\boldsymbol{\mathrm{always}}\:\mathrm{0}? \\ $$

Question Number 19247    Answers: 1   Comments: 2

Question Number 20046    Answers: 0   Comments: 3

Anyone who has a very high passion for Mathematics should join AoPS community. It has all types of groups, from middle school math to olympiad to college math. But a new user can only post 3 topics. This restriction will be removed after 2 weeks. Thanks for joining. Sign up on: artofproblemsolving.com For question forum: artofproblemsolving.com/community

$$\mathrm{Anyone}\:\mathrm{who}\:\mathrm{has}\:\mathrm{a}\:\mathrm{very}\:\mathrm{high}\:\mathrm{passion} \\ $$$$\mathrm{for}\:\mathrm{Mathematics}\:\mathrm{should}\:\mathrm{join}\:\mathrm{AoPS} \\ $$$$\mathrm{community}.\:\mathrm{It}\:\mathrm{has}\:\mathrm{all}\:\mathrm{types}\:\mathrm{of}\:\mathrm{groups}, \\ $$$$\mathrm{from}\:\mathrm{middle}\:\mathrm{school}\:\mathrm{math}\:\mathrm{to}\:\mathrm{olympiad} \\ $$$$\mathrm{to}\:\mathrm{college}\:\mathrm{math}.\:\mathrm{But}\:\mathrm{a}\:\mathrm{new}\:\mathrm{user}\:\mathrm{can} \\ $$$$\mathrm{only}\:\mathrm{post}\:\mathrm{3}\:\mathrm{topics}.\:\mathrm{This}\:\mathrm{restriction}\:\mathrm{will} \\ $$$$\mathrm{be}\:\mathrm{removed}\:\mathrm{after}\:\mathrm{2}\:\mathrm{weeks}.\:\mathrm{Thanks}\:\mathrm{for} \\ $$$$\mathrm{joining}.\:\mathrm{Sign}\:\mathrm{up}\:\mathrm{on}: \\ $$$$\mathrm{artofproblemsolving}.\mathrm{com} \\ $$$$\mathrm{For}\:\mathrm{question}\:\mathrm{forum}: \\ $$$$\mathrm{artofproblemsolving}.\mathrm{com}/\mathrm{community} \\ $$

  Pg 1889      Pg 1890      Pg 1891      Pg 1892      Pg 1893      Pg 1894      Pg 1895      Pg 1896      Pg 1897      Pg 1898   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com