Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1894

Question Number 19953    Answers: 0   Comments: 0

Question Number 19920    Answers: 0   Comments: 2

lim_(n→∞) n∫_0 ^∞ sin x^n dx

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}\int_{\mathrm{0}} ^{\infty} \mathrm{sin}\:{x}^{{n}} \mathrm{d}{x} \\ $$

Question Number 19914    Answers: 0   Comments: 0

Question Number 19912    Answers: 1   Comments: 1

Question Number 19905    Answers: 0   Comments: 2

am get a trou ble to decrea se the size of text! where c an i able to de crease the size of text?

$$\mathrm{am}\:\mathrm{get}\:\mathrm{a}\:\mathrm{trou} \\ $$$$\mathrm{ble}\:\mathrm{to}\:\mathrm{decrea} \\ $$$$\mathrm{se}\:\mathrm{the}\:\mathrm{size}\:\mathrm{of}\: \\ $$$$\mathrm{text}!\:\mathrm{where}\:\mathrm{c} \\ $$$$\mathrm{an}\:\mathrm{i}\:\mathrm{able}\:\mathrm{to}\:\mathrm{de} \\ $$$$\mathrm{crease}\:\mathrm{the}\:\mathrm{size} \\ $$$$\mathrm{of}\:\mathrm{text}? \\ $$

Question Number 19915    Answers: 2   Comments: 3

Question Number 19903    Answers: 1   Comments: 0

by use the first principle,find dy/dx of y=cos(x−(Π/8))

$$\mathrm{by}\:\mathrm{use}\:\mathrm{the}\:\mathrm{first}\: \\ $$$$\mathrm{principle},\mathrm{find} \\ $$$$\mathrm{dy}/\mathrm{dx}\:\mathrm{of}\: \\ $$$$\mathrm{y}=\mathrm{cos}\left(\mathrm{x}−\frac{\Pi}{\mathrm{8}}\right) \\ $$

Question Number 19900    Answers: 2   Comments: 0

Prove that this is an identity in x: (((x−a)(x−b))/((c−a)(c−b)))+(((x−b)(x−c))/((a−b)(a−c)))+(((x−c)(x−a))/((b−c)(b−a)))=1

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{this}\:\mathrm{is}\:\mathrm{an}\:\mathrm{identity}\:\mathrm{in}\:{x}: \\ $$$$\frac{\left({x}−{a}\right)\left({x}−{b}\right)}{\left({c}−{a}\right)\left({c}−{b}\right)}+\frac{\left({x}−{b}\right)\left({x}−{c}\right)}{\left({a}−{b}\right)\left({a}−{c}\right)}+\frac{\left({x}−{c}\right)\left({x}−{a}\right)}{\left({b}−{c}\right)\left({b}−{a}\right)}=\mathrm{1} \\ $$

Question Number 19895    Answers: 1   Comments: 1

Question Number 19898    Answers: 2   Comments: 0

Simplify : i log (((x − i)/(x + i))).

$$\mathrm{Simplify}\::\:{i}\:\mathrm{log}\:\left(\frac{{x}\:−\:{i}}{{x}\:+\:{i}}\right). \\ $$

Question Number 19890    Answers: 1   Comments: 0

A man on top of a tower of height 35m throws a stone vertically upwards with a speed of 14m/s. Find: (i)the height above the ground, reached by the stone. (ii)the speed of the stone,when it reaches the ground.

$${A}\:{man}\:{on}\:{top}\:{of}\:{a}\:{tower}\:{of}\:{height} \\ $$$$\mathrm{35}{m}\:{throws}\:{a}\:{stone}\:{vertically} \\ $$$${upwards}\:{with}\:{a}\:{speed}\:{of}\:\mathrm{14}{m}/{s}. \\ $$$${Find}: \\ $$$$\left({i}\right){the}\:{height}\:{above}\:{the}\:{ground}, \\ $$$${reached}\:{by}\:{the}\:{stone}. \\ $$$$\left({ii}\right){the}\:{speed}\:{of}\:{the}\:{stone},{when} \\ $$$${it}\:{reaches}\:{the}\:{ground}. \\ $$

Question Number 19886    Answers: 0   Comments: 1

Good morning sirs.Please is there any site or pdf that really explains motion(from equation of motion to Newton′s laws of motion)? if there is pls mrw1 ,ajfour ,123456 ,Tinkutara, mr b.e.h.i ,joel and others please help out;i really need to learn it. Thanks.

$${Good}\:{morning}\:{sirs}.{Please}\:{is} \\ $$$${there}\:{any}\:{site}\:{or}\:{pdf}\:{that}\:{really} \\ $$$${explains}\:{motion}\left({from}\:{equation}\right. \\ $$$${of}\:{motion}\:{to}\:{Newton}'{s}\:{laws}\:{of} \\ $$$$\left.{motion}\right)?\: \\ $$$${if}\:{there}\:{is}\:{pls} \\ $$$${mrw}\mathrm{1}\:,{ajfour}\:,\mathrm{123456}\:,{Tinkutara}, \\ $$$${mr}\:{b}.{e}.{h}.{i}\:,{joel}\:{and}\:{others}\:{please} \\ $$$${help}\:{out};{i}\:{really}\:{need}\:{to}\:{learn}\:{it}. \\ $$$$ \\ $$$${Thanks}. \\ $$$$ \\ $$

Question Number 19884    Answers: 1   Comments: 1

Question Number 19877    Answers: 0   Comments: 0

Question Number 19875    Answers: 1   Comments: 1

Question Number 19860    Answers: 1   Comments: 0

log_e (√(((1−cox)/(1+cosx)) differentiate w.r.t x))

$$\mathrm{log}_{{e}} \sqrt{\frac{\mathrm{1}−{cox}}{\mathrm{1}+{cosx}}\:\:\boldsymbol{{differentiate}}\:\boldsymbol{{w}}.\boldsymbol{{r}}.\boldsymbol{{t}}\:\boldsymbol{{x}}} \\ $$

Question Number 19859    Answers: 0   Comments: 1

(((√)1+x−(√)1−x)/((√)1+x−(√)1−x)) differentiate w.r.t x

$$\frac{\sqrt{}\mathrm{1}+{x}−\sqrt{}\mathrm{1}−{x}}{\sqrt{}\mathrm{1}+{x}−\sqrt{}\mathrm{1}−{x}}\:\:\boldsymbol{{differentiate}}\:\boldsymbol{{w}}.\boldsymbol{{r}}.\boldsymbol{{t}}\:\boldsymbol{{x}} \\ $$

Question Number 19857    Answers: 0   Comments: 3

proof that (a_− +b_− ).c_− =a_− .c_− +b_− .c_− or the distribiuting law of dot products

$${proof}\:{that}\:\left(\underset{−} {{a}}+\underset{−} {{b}}\right).\underset{−} {{c}}=\underset{−} {{a}}.\underset{−} {{c}}+\underset{−} {{b}}.\underset{−} {{c}} \\ $$$${or}\:{the}\:{distribiuting}\:{law}\:{of}\:{dot}\:{products} \\ $$$$ \\ $$

Question Number 19822    Answers: 1   Comments: 0

Question Number 19812    Answers: 1   Comments: 0

If tangent line of equation y = (x/(3 − x)) at x = a crossed line y = x at (b,b) Find b in terms of a

$$\mathrm{If}\:\mathrm{tangent}\:\mathrm{line}\:\mathrm{of}\:\mathrm{equation}\:{y}\:=\:\frac{{x}}{\mathrm{3}\:−\:{x}}\:\mathrm{at}\: \\ $$$${x}\:=\:{a}\:\mathrm{crossed}\:\mathrm{line}\:{y}\:=\:{x}\:\mathrm{at}\:\left({b},{b}\right) \\ $$$$\mathrm{Find}\:{b}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{a} \\ $$

Question Number 19811    Answers: 0   Comments: 2

If f(x) = (x +1)g(x) − 2 and g(3) = 4 Find the remainder if f(x) divided by (x + 1)(x − 3)

$$\mathrm{If}\:{f}\left({x}\right)\:=\:\left({x}\:+\mathrm{1}\right){g}\left({x}\right)\:−\:\mathrm{2}\:\mathrm{and}\:{g}\left(\mathrm{3}\right)\:=\:\mathrm{4} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{if}\:{f}\left({x}\right)\:\mathrm{divided}\:\mathrm{by}\: \\ $$$$\left({x}\:+\:\mathrm{1}\right)\left({x}\:−\:\mathrm{3}\right) \\ $$

Question Number 19809    Answers: 1   Comments: 0

If sin θ+cosec θ=2, then sin^2 θ+cosec^2 θ is equal to

$$\mathrm{If}\:\mathrm{sin}\:\theta+\mathrm{cosec}\:\theta=\mathrm{2},\:\mathrm{then}\:\mathrm{sin}^{\mathrm{2}} \theta+\mathrm{cosec}^{\mathrm{2}} \theta \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 19978    Answers: 1   Comments: 0

Let f be a one-to-one function from the set of natural numbers to itself such that f(mn) = f(m)f(n) for all natural numbers m and n. What is the least possible value of f(999)?

$$\mathrm{Let}\:{f}\:\mathrm{be}\:\mathrm{a}\:\mathrm{one}-\mathrm{to}-\mathrm{one}\:\mathrm{function}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{natural}\:\mathrm{numbers}\:\mathrm{to}\:\mathrm{itself} \\ $$$$\mathrm{such}\:\mathrm{that}\:{f}\left({mn}\right)\:=\:{f}\left({m}\right){f}\left({n}\right)\:\mathrm{for}\:\mathrm{all} \\ $$$$\mathrm{natural}\:\mathrm{numbers}\:{m}\:\mathrm{and}\:{n}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{least}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:{f}\left(\mathrm{999}\right)? \\ $$

Question Number 19799    Answers: 0   Comments: 2

For a natural number b, let N(b) denote the number of natural numbers a for which the equation x^2 + ax + b = 0 has integer roots. What is the smallest value of b for which N(b) = 20?

$$\mathrm{For}\:\mathrm{a}\:\mathrm{natural}\:\mathrm{number}\:{b},\:\mathrm{let}\:{N}\left({b}\right)\:\mathrm{denote} \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{natural}\:\mathrm{numbers}\:{a}\:\mathrm{for} \\ $$$$\mathrm{which}\:\mathrm{the}\:\mathrm{equation}\:{x}^{\mathrm{2}} \:+\:{ax}\:+\:{b}\:=\:\mathrm{0}\:\mathrm{has} \\ $$$$\mathrm{integer}\:\mathrm{roots}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{smallest} \\ $$$$\mathrm{value}\:\mathrm{of}\:{b}\:\mathrm{for}\:\mathrm{which}\:{N}\left({b}\right)\:=\:\mathrm{20}? \\ $$

Question Number 19796    Answers: 1   Comments: 1

Question Number 19795    Answers: 1   Comments: 0

One morning, each member of Manjul′s family drank an 8-ounce mixture of coffee and milk. The amounts of coffee and milk varied from cup to cup, but were never zero. Manjul drank 1/7-th of the total amount of milk and 2/17-th of the total amount of coffee. How many people are there in Manjul′s family?

$$\mathrm{One}\:\mathrm{morning},\:\mathrm{each}\:\mathrm{member}\:\mathrm{of}\:\mathrm{Manjul}'\mathrm{s} \\ $$$$\mathrm{family}\:\mathrm{drank}\:\mathrm{an}\:\mathrm{8}-\mathrm{ounce}\:\mathrm{mixture}\:\mathrm{of} \\ $$$$\mathrm{coffee}\:\mathrm{and}\:\mathrm{milk}.\:\mathrm{The}\:\mathrm{amounts}\:\mathrm{of}\:\mathrm{coffee} \\ $$$$\mathrm{and}\:\mathrm{milk}\:\mathrm{varied}\:\mathrm{from}\:\mathrm{cup}\:\mathrm{to}\:\mathrm{cup},\:\mathrm{but} \\ $$$$\mathrm{were}\:\mathrm{never}\:\mathrm{zero}.\:\mathrm{Manjul}\:\mathrm{drank}\:\mathrm{1}/\mathrm{7}-\mathrm{th} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{total}\:\mathrm{amount}\:\mathrm{of}\:\mathrm{milk}\:\mathrm{and}\:\mathrm{2}/\mathrm{17}-\mathrm{th} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{total}\:\mathrm{amount}\:\mathrm{of}\:\mathrm{coffee}.\:\mathrm{How} \\ $$$$\mathrm{many}\:\mathrm{people}\:\mathrm{are}\:\mathrm{there}\:\mathrm{in}\:\mathrm{Manjul}'\mathrm{s} \\ $$$$\mathrm{family}? \\ $$

  Pg 1889      Pg 1890      Pg 1891      Pg 1892      Pg 1893      Pg 1894      Pg 1895      Pg 1896      Pg 1897      Pg 1898   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com