Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1894

Question Number 19508    Answers: 0   Comments: 0

Prove that the length of perpendicular drawn from the point z_0 to the straight line α^ z + αz^ + c = 0 is p = ∣((α^ z_0 + αz_0 ^ + c)/(2 ∣α∣))∣.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{perpendicular} \\ $$$$\mathrm{drawn}\:\mathrm{from}\:\mathrm{the}\:\mathrm{point}\:{z}_{\mathrm{0}} \:\mathrm{to}\:\mathrm{the}\:\mathrm{straight} \\ $$$$\mathrm{line}\:\bar {\alpha}{z}\:+\:\alpha\bar {{z}}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{is} \\ $$$${p}\:=\:\mid\frac{\bar {\alpha}{z}_{\mathrm{0}} \:+\:\alpha\bar {{z}}_{\mathrm{0}} \:+\:{c}}{\mathrm{2}\:\mid\alpha\mid}\mid. \\ $$

Question Number 19507    Answers: 1   Comments: 0

Prove that three points z_1 , z_2 , z_3 are collinear if determinant ((z_1 ,z_1 ^ ,1),(z_2 ,z_2 ^ ,1),(z_3 ,z_3 ^ ,1))= 0

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{three}\:\mathrm{points}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{are} \\ $$$$\mathrm{collinear}\:\mathrm{if}\:\begin{vmatrix}{{z}_{\mathrm{1}} }&{\bar {{z}}_{\mathrm{1}} }&{\mathrm{1}}\\{{z}_{\mathrm{2}} }&{\bar {{z}}_{\mathrm{2}} }&{\mathrm{1}}\\{{z}_{\mathrm{3}} }&{\bar {{z}}_{\mathrm{3}} }&{\mathrm{1}}\end{vmatrix}=\:\mathrm{0} \\ $$

Question Number 19506    Answers: 1   Comments: 0

Prove that the equation of the line joining the points z_1 and z_2 can be put in the form z = tz_1 + (1 − t)z_2 , where t is a parameter.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{joining}\:\mathrm{the}\:\mathrm{points}\:{z}_{\mathrm{1}} \:\mathrm{and}\:{z}_{\mathrm{2}} \:\mathrm{can}\:\mathrm{be}\:\mathrm{put} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:{z}\:=\:{tz}_{\mathrm{1}} \:+\:\left(\mathrm{1}\:−\:{t}\right){z}_{\mathrm{2}} ,\:\mathrm{where} \\ $$$${t}\:\mathrm{is}\:\mathrm{a}\:\mathrm{parameter}. \\ $$

Question Number 19505    Answers: 1   Comments: 0

Prove that two straight lines with complex slopes μ_1 and μ_2 are parallel and perpendicular according as μ_1 = μ_2 and μ_1 + μ_2 = 0. Hence if the straight lines α^ z + αz^ + c = 0 and β^ z + βz^ + k = 0 are parallel and perpendicular according as α^ β − αβ^ = 0 and α^ β + αβ^ = 0.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{two}\:\mathrm{straight}\:\mathrm{lines}\:\mathrm{with} \\ $$$$\mathrm{complex}\:\mathrm{slopes}\:\mu_{\mathrm{1}} \:\mathrm{and}\:\mu_{\mathrm{2}} \:\mathrm{are}\:\mathrm{parallel} \\ $$$$\mathrm{and}\:\mathrm{perpendicular}\:\mathrm{according}\:\mathrm{as}\:\mu_{\mathrm{1}} \:=\:\mu_{\mathrm{2}} \\ $$$$\mathrm{and}\:\mu_{\mathrm{1}} \:+\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\:\mathrm{Hence}\:\mathrm{if}\:\mathrm{the}\:\mathrm{straight} \\ $$$$\mathrm{lines}\:\bar {\alpha}{z}\:+\:\alpha\bar {{z}}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{and}\:\bar {\beta}{z}\:+\:\beta\bar {{z}}\:+\:{k}\:=\:\mathrm{0} \\ $$$$\mathrm{are}\:\mathrm{parallel}\:\mathrm{and}\:\mathrm{perpendicular}\:\mathrm{according} \\ $$$$\mathrm{as}\:\bar {\alpha}\beta\:−\:\alpha\bar {\beta}\:=\:\mathrm{0}\:\mathrm{and}\:\bar {\alpha}\beta\:+\:\alpha\bar {\beta}\:=\:\mathrm{0}. \\ $$

Question Number 19531    Answers: 1   Comments: 0

Question Number 19557    Answers: 1   Comments: 3

Question Number 19556    Answers: 0   Comments: 0

Question Number 19499    Answers: 1   Comments: 0

Find the last digit of 2^(253)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{digit}\:\mathrm{of}\:\:\mathrm{2}^{\mathrm{253}} \\ $$

Question Number 19554    Answers: 0   Comments: 0

proof (a^− +b^− ).c^− =a^− .c^− +b^− .c^−

$${proof}\:\left(\overset{−} {{a}}+\overset{−} {{b}}\right).\overset{−} {{c}}=\overset{−} {{a}}.\overset{−} {{c}}+\overset{−} {{b}}.\overset{−} {{c}} \\ $$

Question Number 19472    Answers: 0   Comments: 3

A fishing boat is anchored 9 km away from the nearest point on the shore. A messanger must be sent from the fishing boat to a camp, 15 km from the point on shore closest to boat. If the messanger can walk at a speed of 5 km per hour and can row at 4 km/h, determine the distance of that point (in km) from the shore, where he must land so as to reach the shore in least possible time.

$$\mathrm{A}\:\mathrm{fishing}\:\mathrm{boat}\:\mathrm{is}\:\mathrm{anchored}\:\mathrm{9}\:\mathrm{km}\:\mathrm{away} \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{nearest}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{shore}.\:\mathrm{A} \\ $$$$\mathrm{messanger}\:\mathrm{must}\:\mathrm{be}\:\mathrm{sent}\:\mathrm{from}\:\mathrm{the}\:\mathrm{fishing} \\ $$$$\mathrm{boat}\:\mathrm{to}\:\mathrm{a}\:\mathrm{camp},\:\mathrm{15}\:\mathrm{km}\:\mathrm{from}\:\mathrm{the}\:\mathrm{point} \\ $$$$\mathrm{on}\:\mathrm{shore}\:\mathrm{closest}\:\mathrm{to}\:\mathrm{boat}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{messanger} \\ $$$$\mathrm{can}\:\mathrm{walk}\:\mathrm{at}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{5}\:\mathrm{km}\:\mathrm{per}\:\mathrm{hour} \\ $$$$\mathrm{and}\:\mathrm{can}\:\mathrm{row}\:\mathrm{at}\:\mathrm{4}\:\mathrm{km}/\mathrm{h},\:\mathrm{determine}\:\mathrm{the} \\ $$$$\mathrm{distance}\:\mathrm{of}\:\mathrm{that}\:\mathrm{point}\:\left(\mathrm{in}\:\mathrm{km}\right)\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{shore},\:\mathrm{where}\:\mathrm{he}\:\mathrm{must}\:\mathrm{land}\:\mathrm{so}\:\mathrm{as}\:\mathrm{to} \\ $$$$\mathrm{reach}\:\mathrm{the}\:\mathrm{shore}\:\mathrm{in}\:\mathrm{least}\:\mathrm{possible}\:\mathrm{time}. \\ $$

Question Number 19455    Answers: 1   Comments: 0

Prove that if z = cos 6° + i sin 6°, then (1/(z^2 + 1)) − ((iz)/(z^4 − 1)) + ((iz^3 )/(z^8 − 1)) + ((iz^7 )/(z^(16) − 1)) = 0.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:{z}\:=\:\mathrm{cos}\:\mathrm{6}°\:+\:{i}\:\mathrm{sin}\:\mathrm{6}°,\:\mathrm{then} \\ $$$$\frac{\mathrm{1}}{{z}^{\mathrm{2}} \:+\:\mathrm{1}}\:−\:\frac{{iz}}{{z}^{\mathrm{4}} \:−\:\mathrm{1}}\:+\:\frac{{iz}^{\mathrm{3}} }{{z}^{\mathrm{8}} \:−\:\mathrm{1}}\:+\:\frac{{iz}^{\mathrm{7}} }{{z}^{\mathrm{16}} \:−\:\mathrm{1}}\:=\:\mathrm{0}. \\ $$

Question Number 19435    Answers: 1   Comments: 0

If α = cos ((2π)/5) + i sin ((2π)/5) , then find the value of α + α^2 + α^3 + α^4 .

$$\mathrm{If}\:\alpha\:=\:\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{5}}\:+\:{i}\:\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{5}}\:,\:\mathrm{then}\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\alpha\:+\:\alpha^{\mathrm{2}} \:+\:\alpha^{\mathrm{3}} \:+\:\alpha^{\mathrm{4}} . \\ $$

Question Number 19434    Answers: 1   Comments: 0

If (((1 + i(√3))/(1 − i(√3))))^n is an integer, then n is

$$\mathrm{If}\:\left(\frac{\mathrm{1}\:+\:{i}\sqrt{\mathrm{3}}}{\mathrm{1}\:−\:{i}\sqrt{\mathrm{3}}}\right)^{{n}} \:\mathrm{is}\:\mathrm{an}\:\mathrm{integer},\:\mathrm{then}\:{n}\:\mathrm{is} \\ $$

Question Number 19433    Answers: 1   Comments: 0

(((√(5 + 12i)) + (√(5 − 12i)))/((√(5 + 12i)) − (√(5 − 12i)))) =

$$\frac{\sqrt{\mathrm{5}\:+\:\mathrm{12}{i}}\:+\:\sqrt{\mathrm{5}\:−\:\mathrm{12}{i}}}{\sqrt{\mathrm{5}\:+\:\mathrm{12}{i}}\:−\:\sqrt{\mathrm{5}\:−\:\mathrm{12}{i}}}\:= \\ $$

Question Number 19419    Answers: 1   Comments: 1

sin z=200 find z

$$\mathrm{sin}\:\boldsymbol{{z}}=\mathrm{200} \\ $$$$ \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{z}} \\ $$

Question Number 19415    Answers: 1   Comments: 0

PS is a line segment of length 4 and O is the midpoint of PS. A semicircular arc is drawn with PS as diameter. Let X be the midpoint of this arc. Q and R are points on the arc PXS such that QR is parallel to PS and the semicircular arc drawn with QR as diameter is tangent to PS. What is the area of the region QXROQ bounded by the two semicircular arcs?

$${PS}\:\mathrm{is}\:\mathrm{a}\:\mathrm{line}\:\mathrm{segment}\:\mathrm{of}\:\mathrm{length}\:\mathrm{4}\:\mathrm{and}\:{O} \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:{PS}.\:\mathrm{A}\:\mathrm{semicircular} \\ $$$$\mathrm{arc}\:\mathrm{is}\:\mathrm{drawn}\:\mathrm{with}\:{PS}\:\mathrm{as}\:\mathrm{diameter}.\:\mathrm{Let} \\ $$$${X}\:\mathrm{be}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:\mathrm{this}\:\mathrm{arc}.\:{Q}\:\mathrm{and}\:{R} \\ $$$$\mathrm{are}\:\mathrm{points}\:\mathrm{on}\:\mathrm{the}\:\mathrm{arc}\:{PXS}\:\mathrm{such}\:\mathrm{that}\:{QR} \\ $$$$\mathrm{is}\:\mathrm{parallel}\:\mathrm{to}\:{PS}\:\mathrm{and}\:\mathrm{the}\:\mathrm{semicircular} \\ $$$$\mathrm{arc}\:\mathrm{drawn}\:\mathrm{with}\:{QR}\:\mathrm{as}\:\mathrm{diameter}\:\mathrm{is} \\ $$$$\mathrm{tangent}\:\mathrm{to}\:{PS}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{region}\:{QXROQ}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{the}\:\mathrm{two} \\ $$$$\mathrm{semicircular}\:\mathrm{arcs}? \\ $$

Question Number 19413    Answers: 1   Comments: 1

How many integer pairs (x, y) satisfy x^2 + 4y^2 − 2xy − 2x − 4y − 8 = 0?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{integer}\:\mathrm{pairs}\:\left({x},\:{y}\right)\:\mathrm{satisfy} \\ $$$${x}^{\mathrm{2}} \:+\:\mathrm{4}{y}^{\mathrm{2}} \:−\:\mathrm{2}{xy}\:−\:\mathrm{2}{x}\:−\:\mathrm{4}{y}\:−\:\mathrm{8}\:=\:\mathrm{0}? \\ $$

Question Number 19409    Answers: 2   Comments: 1

What is the sum of the squares of the roots of the equation x^2 − 7[x] + 5 = 0? (Here [x] denotes the greatest integer less than or equal to x. For example [3.4] = 3 and [−2.3] = −3.)

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{squares}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:{x}^{\mathrm{2}} \:−\:\mathrm{7}\left[{x}\right]\:+\:\mathrm{5}\:=\:\mathrm{0}? \\ $$$$\left(\mathrm{Here}\:\left[{x}\right]\:\mathrm{denotes}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{integer}\right. \\ $$$$\mathrm{less}\:\mathrm{than}\:\mathrm{or}\:\mathrm{equal}\:\mathrm{to}\:{x}.\:\mathrm{For}\:\mathrm{example} \\ $$$$\left.\left[\mathrm{3}.\mathrm{4}\right]\:=\:\mathrm{3}\:\mathrm{and}\:\left[−\mathrm{2}.\mathrm{3}\right]\:=\:−\mathrm{3}.\right) \\ $$

Question Number 19403    Answers: 1   Comments: 1

Let P(n) = (n + 1)(n + 3)(n + 5)(n + 7)(n + 9). What is the largest integer that is a divisor of P(n) for all positive even integers n?

$$\mathrm{Let}\:{P}\left({n}\right)\:=\:\left({n}\:+\:\mathrm{1}\right)\left({n}\:+\:\mathrm{3}\right)\left({n}\:+\:\mathrm{5}\right)\left({n}\:+\:\mathrm{7}\right)\left({n}\:+\:\mathrm{9}\right). \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{integer}\:\mathrm{that}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{divisor}\:\mathrm{of}\:{P}\left({n}\right)\:\mathrm{for}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{even} \\ $$$$\mathrm{integers}\:{n}? \\ $$

Question Number 19457    Answers: 1   Comments: 0

prove that ∫tan^2 xdx =tan x−x

$${prove}\:{that}\:\int\mathrm{tan}\:^{\mathrm{2}} {xdx} \\ $$$$ \\ $$$$=\mathrm{tan}\:{x}−{x} \\ $$

Question Number 19394    Answers: 1   Comments: 0

Question Number 19393    Answers: 1   Comments: 0

Three tennis players A, B and C play each other only once. The probability that A will beat B is (3/5), that B will beat C is (2/3), and that A will beat C is (5/7). Find (1) the probability that A will not win both games (2) the probability that A will win not both games.

$$\mathrm{Three}\:\mathrm{tennis}\:\mathrm{players}\:\mathrm{A},\:\mathrm{B}\:\mathrm{and}\:\mathrm{C}\:\mathrm{play}\:\mathrm{each} \\ $$$$\mathrm{other}\:\mathrm{only}\:\mathrm{once}.\:\mathrm{The}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{A}\:\mathrm{will} \\ $$$$\mathrm{beat}\:\mathrm{B}\:\mathrm{is}\:\frac{\mathrm{3}}{\mathrm{5}},\:\mathrm{that}\:\mathrm{B}\:\mathrm{will}\:\mathrm{beat}\:\mathrm{C}\:\mathrm{is}\:\frac{\mathrm{2}}{\mathrm{3}},\:\mathrm{and}\:\mathrm{that} \\ $$$$\mathrm{A}\:\mathrm{will}\:\mathrm{beat}\:\mathrm{C}\:\mathrm{is}\:\frac{\mathrm{5}}{\mathrm{7}}.\:\mathrm{Find}\:\left(\mathrm{1}\right)\:\mathrm{the}\:\mathrm{probability} \\ $$$$\mathrm{that}\:\mathrm{A}\:\mathrm{will}\:\mathrm{not}\:\mathrm{win}\:\mathrm{both}\:\mathrm{games} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{A}\:\mathrm{will}\:\mathrm{win}\:\mathrm{not}\:\mathrm{both}\:\mathrm{games}. \\ $$

Question Number 19555    Answers: 1   Comments: 0

Find center and radius of circle having equation zz^ + (1 − i)z + (1 + i)z^ − 1 = 0.

$$\mathrm{Find}\:\mathrm{center}\:\mathrm{and}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{circle}\:\mathrm{having} \\ $$$$\mathrm{equation}\:{z}\bar {{z}}\:+\:\left(\mathrm{1}\:−\:{i}\right){z}\:+\:\left(\mathrm{1}\:+\:{i}\right)\bar {{z}}\:−\:\mathrm{1}\:=\:\mathrm{0}. \\ $$

Question Number 19391    Answers: 0   Comments: 1

Question Number 19389    Answers: 1   Comments: 0

What is the digital root of 3^(2017)

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{digital}\:\mathrm{root}\:\mathrm{of}\:\:\mathrm{3}^{\mathrm{2017}} \\ $$

Question Number 19388    Answers: 0   Comments: 1

related to Q.19333 the side lengthes of a triangle are integer. if the perimeter of the triangle is 100, how many different triangles exist? what is the maximum area of them?

$$\mathrm{related}\:\mathrm{to}\:\mathrm{Q}.\mathrm{19333} \\ $$$$\mathrm{the}\:\mathrm{side}\:\mathrm{lengthes}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{are}\: \\ $$$$\mathrm{integer}.\:\mathrm{if}\:\mathrm{the}\:\mathrm{perimeter}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle} \\ $$$$\mathrm{is}\:\mathrm{100},\:\mathrm{how}\:\mathrm{many}\:\mathrm{different}\:\mathrm{triangles} \\ $$$$\mathrm{exist}?\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{area}\:\mathrm{of} \\ $$$$\mathrm{them}? \\ $$

  Pg 1889      Pg 1890      Pg 1891      Pg 1892      Pg 1893      Pg 1894      Pg 1895      Pg 1896      Pg 1897      Pg 1898   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com