Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1894

Question Number 17373    Answers: 2   Comments: 0

Find the point in interior of a convex quadrilateral such that the sum of its distances to the 4 vertices is minimal. Find the point in interior of a convex quadrilateral such that the sum of its distances to the 4 sides is minimal.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\:\mathrm{in}\:\mathrm{interior}\:\mathrm{of}\:\mathrm{a}\:\mathrm{convex} \\ $$$$\mathrm{quadrilateral}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{its} \\ $$$$\mathrm{distances}\:\mathrm{to}\:\mathrm{the}\:\mathrm{4}\:\mathrm{vertices}\:\mathrm{is}\:\mathrm{minimal}. \\ $$$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\:\mathrm{in}\:\mathrm{interior}\:\mathrm{of}\:\mathrm{a}\:\mathrm{convex} \\ $$$$\mathrm{quadrilateral}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{its} \\ $$$$\mathrm{distances}\:\mathrm{to}\:\mathrm{the}\:\mathrm{4}\:\mathrm{sides}\:\mathrm{is}\:\mathrm{minimal}. \\ $$

Question Number 17386    Answers: 2   Comments: 0

Solve the equation: log _2 x log _3 x log _5 x=log _2 x log _3 x +log _3 x log _5 x +log _5 x log _2 x .

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\mathrm{log}\:_{\mathrm{2}} \mathrm{x}\:\mathrm{log}\:_{\mathrm{3}} \mathrm{x}\:\mathrm{log}\:_{\mathrm{5}} \mathrm{x}=\mathrm{log}\:_{\mathrm{2}} \mathrm{x}\:\mathrm{log}\:_{\mathrm{3}} \mathrm{x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{log}\:_{\mathrm{3}} \mathrm{x}\:\mathrm{log}\:_{\mathrm{5}} \mathrm{x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{log}\:_{\mathrm{5}} \mathrm{x}\:\mathrm{log}\:_{\mathrm{2}} \mathrm{x}\:. \\ $$

Question Number 17359    Answers: 0   Comments: 5

For what values of m, the equation (1+m)x^2 −2(1+3m)x+(1+8m)=0 ; m ∈ R , has both roots positive ?

$$\mathrm{For}\:\mathrm{what}\:\mathrm{values}\:\mathrm{of}\:\mathrm{m},\:\mathrm{the}\:\mathrm{equation} \\ $$$$\left(\mathrm{1}+\mathrm{m}\right)\mathrm{x}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{1}+\mathrm{3m}\right)\mathrm{x}+\left(\mathrm{1}+\mathrm{8m}\right)=\mathrm{0}\:; \\ $$$$\:\:\:\mathrm{m}\:\in\:\mathrm{R}\:,\:\mathrm{has}\:\mathrm{both}\:\mathrm{roots}\:\mathrm{positive}\:? \\ $$

Question Number 17354    Answers: 0   Comments: 5

Solve for x : ∣x−1∣−∣x−2∣+∣x+1∣>∣x+2∣+∣x∣−3 .

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\:: \\ $$$$\mid\mathrm{x}−\mathrm{1}\mid−\mid\mathrm{x}−\mathrm{2}\mid+\mid\mathrm{x}+\mathrm{1}\mid>\mid\mathrm{x}+\mathrm{2}\mid+\mid\mathrm{x}\mid−\mathrm{3}\:. \\ $$

Question Number 17348    Answers: 3   Comments: 0

The number of points in (−∞, ∞) for which x^2 − x sin x − cos x = 0 is (1) 6 (2) 4 (3) 2 (4) 0

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{points}\:\mathrm{in}\:\left(−\infty,\:\infty\right)\:\mathrm{for} \\ $$$$\mathrm{which}\:{x}^{\mathrm{2}} \:−\:{x}\:\mathrm{sin}\:{x}\:−\:\mathrm{cos}\:{x}\:=\:\mathrm{0}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{6} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{4} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{2} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{0} \\ $$

Question Number 17339    Answers: 0   Comments: 0

Question Number 17336    Answers: 1   Comments: 1

The last time Nkechi was at school was on Saturday.She was first absent for 4days before that. Today is Tuesday,27th of September.When was Nkechi first absent?Give the day and date.Select one: 1.Monday september 12 2.Tuesday September 13 3.Wednesday September 14 4.Thursday September 15

$$\mathrm{The}\:\mathrm{last}\:\mathrm{time}\:\mathrm{Nkechi}\:\mathrm{was}\:\mathrm{at}\:\mathrm{school} \\ $$$$\mathrm{was}\:\mathrm{on}\:\mathrm{Saturday}.\mathrm{She}\:\mathrm{was}\:\mathrm{first} \\ $$$$\mathrm{absent}\:\mathrm{for}\:\mathrm{4days}\:\mathrm{before}\:\mathrm{that}. \\ $$$$\mathrm{Today}\:\mathrm{is}\:\mathrm{Tuesday},\mathrm{27th}\:\mathrm{of}\: \\ $$$$\mathrm{September}.\mathrm{When}\:\mathrm{was}\:\mathrm{Nkechi} \\ $$$$\mathrm{first}\:\mathrm{absent}?\mathrm{Give}\:\mathrm{the}\:\mathrm{day}\:\mathrm{and} \\ $$$$\mathrm{date}.\mathrm{Select}\:\mathrm{one}: \\ $$$$\mathrm{1}.\mathrm{Monday}\:\mathrm{september}\:\mathrm{12} \\ $$$$\mathrm{2}.\mathrm{Tuesday}\:\mathrm{September}\:\mathrm{13} \\ $$$$\mathrm{3}.\mathrm{Wednesday}\:\mathrm{September}\:\mathrm{14} \\ $$$$\mathrm{4}.\mathrm{Thursday}\:\mathrm{September}\:\mathrm{15} \\ $$

Question Number 17317    Answers: 0   Comments: 1

∫1/(√(sin 3xsin (x−α)))

$$\int\mathrm{1}/\sqrt{\mathrm{sin}\:\mathrm{3}{x}\mathrm{sin}\:\left({x}−\alpha\right)} \\ $$

Question Number 17313    Answers: 0   Comments: 0

Why magnetic force(F^→ ) on a moving charge q having velocity v is q(v^→ ×B^→ ) ?

$$\mathrm{Why}\:\mathrm{magnetic}\:\mathrm{force}\left(\overset{\rightarrow} {\mathrm{F}}\right)\:\mathrm{on}\:\mathrm{a}\:\mathrm{moving}\:\mathrm{charge} \\ $$$$\:\mathrm{q}\:\:\mathrm{having}\:\mathrm{velocity}\:\mathrm{v}\:\mathrm{is}\:\:\:\mathrm{q}\left(\overset{\rightarrow} {\mathrm{v}}×\overset{\rightarrow} {\mathrm{B}}\right)\:? \\ $$

Question Number 17303    Answers: 0   Comments: 0

What are next three numbers in the following sequence: 4,6,12,18,30,42,60,...

$$\mathrm{What}\:\mathrm{are}\:\mathrm{next}\:\mathrm{three}\:\mathrm{numbers} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{following}\:\mathrm{sequence}: \\ $$$$\mathrm{4},\mathrm{6},\mathrm{12},\mathrm{18},\mathrm{30},\mathrm{42},\mathrm{60},... \\ $$

Question Number 17302    Answers: 1   Comments: 2

Find the length of ρ=a(1−cos θ) . ρ=(√(x^2 +y^2 )) , θ=tan^(−1) ((y/x)) .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\: \\ $$$$\:\:\rho=\mathrm{a}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)\:. \\ $$$$\:\rho=\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:\:,\:\:\theta=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{y}}{\mathrm{x}}\right)\:. \\ $$

Question Number 17323    Answers: 2   Comments: 0

Solve: (dy/dx) = ((2cos(2x))/(3 − 2y)) with y(0) = −1 (i) for what value of x > 0 does the situation exist (ii) for what value of x is y(x) maximum

$$\mathrm{Solve}:\:\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{2cos}\left(\mathrm{2x}\right)}{\mathrm{3}\:−\:\mathrm{2y}}\:\:\:\:\:\:\:\:\:\:\:\mathrm{with}\:\:\:\:\mathrm{y}\left(\mathrm{0}\right)\:=\:−\mathrm{1} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{for}\:\mathrm{what}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:>\:\mathrm{0}\:\mathrm{does}\:\mathrm{the}\:\mathrm{situation}\:\mathrm{exist} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{for}\:\mathrm{what}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\mathrm{is}\:\mathrm{y}\left(\mathrm{x}\right)\:\mathrm{maximum} \\ $$

Question Number 17322    Answers: 1   Comments: 0

Solve: (dy/dx) + (1/2)y = (3/2) with y(0) = 4

$$\mathrm{Solve}:\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{y}\:=\:\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{with}\:\:\:\mathrm{y}\left(\mathrm{0}\right)\:=\:\mathrm{4} \\ $$

Question Number 17280    Answers: 0   Comments: 2

prove that: cosh(2x) = 2cosh^2 (x) − 1

$$\mathrm{prove}\:\mathrm{that}:\:\:\mathrm{cosh}\left(\mathrm{2x}\right)\:=\:\mathrm{2cosh}^{\mathrm{2}} \left(\mathrm{x}\right)\:−\:\mathrm{1} \\ $$

Question Number 17279    Answers: 0   Comments: 3

Is cosh^2 (3x) = (1/2)[1 + cos(6x)] ??????

$$\mathrm{Is}\:\:\mathrm{cosh}^{\mathrm{2}} \left(\mathrm{3x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{1}\:+\:\mathrm{cos}\left(\mathrm{6x}\right)\right]\:\:?????? \\ $$

Question Number 17273    Answers: 1   Comments: 2

The intersection of the ABC triangle median is at G point. The corner of the BGC is 90°. If the AG cut length is 12 cm, locate the BC side.

$$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{intersection}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{ABC}}\:\boldsymbol{\mathrm{triangle}} \\ $$$$\boldsymbol{\mathrm{median}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{G}}\:\boldsymbol{\mathrm{point}}.\:\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{corner}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{BGC}}\:\boldsymbol{\mathrm{is}}\:\mathrm{90}°.\:\boldsymbol{\mathrm{If}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{AG}}\:\boldsymbol{\mathrm{cut}}\: \\ $$$$\boldsymbol{\mathrm{length}}\:\boldsymbol{\mathrm{is}}\:\mathrm{12}\:\boldsymbol{\mathrm{cm}},\:\boldsymbol{\mathrm{locate}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{BC}}\:\boldsymbol{\mathrm{side}}. \\ $$

Question Number 17272    Answers: 0   Comments: 5

Determine two distinct primes p and q such that: (i) p+q+1,p+q−1,((p+q)/2) ∈ P (All primes)? (ii) p+q+1,p+q−1,((p+q)/2),((p−q)/2) ∈ P (All primes)?

$$\mathrm{Determine}\:\mathrm{two}\:\mathrm{distinct}\:\mathrm{primes}\:\:\:\mathrm{p}\:\:\:\mathrm{and}\:\:\:\mathrm{q}\: \\ $$$$\mathrm{such}\:\mathrm{that}: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{p}+\mathrm{q}+\mathrm{1},\mathrm{p}+\mathrm{q}−\mathrm{1},\frac{\mathrm{p}+\mathrm{q}}{\mathrm{2}}\:\in\:\mathbb{P}\:\left(\mathrm{All}\:\mathrm{primes}\right)? \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{p}+\mathrm{q}+\mathrm{1},\mathrm{p}+\mathrm{q}−\mathrm{1},\frac{\mathrm{p}+\mathrm{q}}{\mathrm{2}},\frac{\mathrm{p}−\mathrm{q}}{\mathrm{2}}\:\in\:\mathbb{P}\:\left(\mathrm{All}\:\mathrm{primes}\right)? \\ $$

Question Number 17271    Answers: 1   Comments: 0

Solve the equation. (√(((15)/4^(1−x) )+4^(1−x) ))=32.

$$\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{equation}}. \\ $$$$\sqrt{\frac{\mathrm{15}}{\mathrm{4}^{\mathrm{1}−\boldsymbol{\mathrm{x}}} }+\mathrm{4}^{\mathrm{1}−\boldsymbol{\mathrm{x}}} }=\mathrm{32}. \\ $$

Question Number 17270    Answers: 1   Comments: 2

If x=((1+(√(17)))/2). Find the value of ((x^3 −2x^2 +7x−1)/(x^2 −x+1)) decimal point.

$$\boldsymbol{\mathrm{If}}\:\boldsymbol{\mathrm{x}}=\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}}.\:\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}} \\ $$$$\frac{\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{7}\boldsymbol{\mathrm{x}}−\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{x}}+\mathrm{1}}\:\:\boldsymbol{\mathrm{decimal}}\:\boldsymbol{\mathrm{point}}. \\ $$

Question Number 17260    Answers: 1   Comments: 1

for a,b,c>0 prove that (ab+bc+ca)^2 ≥3(a+b+c)abc

$${for}\:{a},{b},{c}>\mathrm{0}\:{prove}\:{that} \\ $$$$\left({ab}+{bc}+{ca}\right)^{\mathrm{2}} \geqslant\mathrm{3}\left({a}+{b}+{c}\right){abc} \\ $$

Question Number 17255    Answers: 1   Comments: 0

∫_0 ^( (Π/2)) ((d(sinx+cosx))/(sinx+cosx))

$$\int_{\mathrm{0}} ^{\:\frac{\Pi}{\mathrm{2}}} \:\frac{\mathrm{d}\left(\mathrm{sinx}+\mathrm{cosx}\right)}{\mathrm{sinx}+\mathrm{cosx}} \\ $$

Question Number 17252    Answers: 0   Comments: 2

The sum of the digits of the number 2^(2000) 5^(2004) is Will it be 13 or 14?

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{2}^{\mathrm{2000}} \mathrm{5}^{\mathrm{2004}} \:\mathrm{is} \\ $$$$\mathrm{Will}\:\mathrm{it}\:\mathrm{be}\:\mathrm{13}\:\mathrm{or}\:\mathrm{14}? \\ $$

Question Number 17328    Answers: 0   Comments: 3

Question Number 17247    Answers: 0   Comments: 0

A carrier based on its anual records notes that its trucks cover 50000 km with a normal distribution with a detour of 12000 km. How many miles can be traveled at least 80% of trucks ?

$${A}\:{carrier}\:{based}\:{on}\:{its}\:{anual}\:{records}\:{notes}\:{that}\:{its}\:{trucks}\:{cover}\:\mathrm{50000} \\ $$$${km}\:{with}\:{a}\:{normal}\:{distribution}\:{with}\:{a}\:{detour}\:{of}\:\mathrm{12000}\:{km}. \\ $$$${How}\:{many}\:{miles}\:{can}\:{be}\:{traveled}\:{at}\:{least}\:\mathrm{80\%}\:{of}\:{trucks}\:? \\ $$

Question Number 17220    Answers: 1   Comments: 0

Show that ∫_a ^( b) f(kx)dx=(1/k)∫_(ka) ^( kb) f(x)dx

$$\mathrm{Show}\:\mathrm{that}\:\int_{\mathrm{a}} ^{\:\mathrm{b}} {f}\left(\mathrm{kx}\right)\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{k}}\int_{\mathrm{ka}} ^{\:\mathrm{kb}} {f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 17219    Answers: 1   Comments: 1

∫_0 ^( 2a) xy dx=? where x^2 −y^2 =a^2 and y≥0

$$\int_{\mathrm{0}} ^{\:\mathrm{2a}} \mathrm{xy}\:\mathrm{dx}=?\:\:\mathrm{where}\:\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} \:\mathrm{and}\:\mathrm{y}\geqslant\mathrm{0} \\ $$

  Pg 1889      Pg 1890      Pg 1891      Pg 1892      Pg 1893      Pg 1894      Pg 1895      Pg 1896      Pg 1897      Pg 1898   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com