Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1894

Question Number 12137    Answers: 0   Comments: 0

Question Number 12130    Answers: 1   Comments: 0

∫(√(a+x/a−x )) −(√(a−x/a+x))

$$\int\sqrt{{a}+{x}/{a}−{x}\:} \\ $$$$−\sqrt{{a}−{x}/{a}+{x}} \\ $$

Question Number 12127    Answers: 1   Comments: 1

Question Number 12126    Answers: 1   Comments: 0

Question Number 12132    Answers: 1   Comments: 0

Given that 1° = 0.017 rad Use f(a) = sin(a) to find an approximate value for sin(29)°.

$$\mathrm{Given}\:\mathrm{that}\:\:\mathrm{1}°\:=\:\mathrm{0}.\mathrm{017}\:\mathrm{rad} \\ $$$$\mathrm{Use}\:\:\mathrm{f}\left(\mathrm{a}\right)\:=\:\mathrm{sin}\left(\mathrm{a}\right)\:\mathrm{to}\:\mathrm{find}\:\mathrm{an}\:\mathrm{approximate}\:\mathrm{value}\:\mathrm{for}\:\mathrm{sin}\left(\mathrm{29}\right)°. \\ $$

Question Number 12131    Answers: 0   Comments: 0

a cube has a rib ABCD.EFGH, the midle point P on BF so that BP = PF, and the midle point Q on FG so that FQ = QG how long projection point C to APQH field ?

$${a}\:{cube}\:{has}\:{a}\:{rib}\:{ABCD}.{EFGH},\:{the}\:{midle}\:{point}\:{P}\:\:{on}\:{BF}\:{so}\:{that}\:{BP}\:=\:{PF}, \\ $$$${and}\:{the}\:{midle}\:{point}\:{Q}\:{on}\:{FG}\:{so}\:{that}\:{FQ}\:=\:{QG} \\ $$$${how}\:{long}\:{projection}\:{point}\:{C}\:{to}\:{APQH}\:{field}\:? \\ $$

Question Number 12111    Answers: 0   Comments: 0

show that: Σ_(n=0) ^∞ (((−1)^n )/(n!))=(1/e) please show your working

$$\mathrm{show}\:\mathrm{that}: \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}=\frac{\mathrm{1}}{{e}} \\ $$$$\mathrm{please}\:\mathrm{show}\:\mathrm{your}\:\mathrm{working} \\ $$

Question Number 12109    Answers: 0   Comments: 0

show that: Σ_(n=1) ^∞ (((−1)^(n+1) )/n)=ln(2) please show your working

$$\mathrm{show}\:\mathrm{that}: \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}}=\mathrm{ln}\left(\mathrm{2}\right) \\ $$$$\mathrm{please}\:\mathrm{show}\:\mathrm{your}\:\mathrm{working} \\ $$

Question Number 12107    Answers: 1   Comments: 2

10^3 + 11^3 + 12^3 + ... + 20^3 Is there any ways to count the sum of that sequence without sum them manually?

$$\mathrm{10}^{\mathrm{3}} \:+\:\mathrm{11}^{\mathrm{3}} \:+\:\mathrm{12}^{\mathrm{3}} \:+\:...\:+\:\mathrm{20}^{\mathrm{3}} \\ $$$$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{ways}\:\mathrm{to}\:\mathrm{count}\:\mathrm{the}\:\mathrm{sum}\: \\ $$$$\mathrm{of}\:\mathrm{that}\:\mathrm{sequence}\:\mathrm{without}\:\mathrm{sum}\:\mathrm{them}\:\mathrm{manually}? \\ $$

Question Number 12106    Answers: 1   Comments: 0

Question Number 12103    Answers: 0   Comments: 0

Evaluate ∫((ln(1+x))/(1+x^2 ))dx

$${Evaluate}\:\int\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 12102    Answers: 2   Comments: 0

Evaluate ∫(1/(cos^2 (x)))dx

$${Evaluate}\:\int\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \left({x}\right)}{dx} \\ $$

Question Number 12101    Answers: 1   Comments: 0

Evaluate ∫_0 ^1 ((tan^(−1) (x))/( x))dx

$${Evaluate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tan}^{−\mathrm{1}} \left({x}\right)}{\:{x}}{dx} \\ $$

Question Number 12100    Answers: 0   Comments: 0

Evaluate −∫_0 ^∞ e^(−x) ln(x)dx

$${Evaluate}\:−\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {ln}\left({x}\right){dx} \\ $$

Question Number 12098    Answers: 2   Comments: 0

Evaluate ∫(√(x^2 −a^2 ))dx

$${Evaluate}\:\int\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }{dx} \\ $$$$ \\ $$$$ \\ $$

Question Number 12096    Answers: 1   Comments: 0

Question Number 12094    Answers: 0   Comments: 0

lim_(x→0) ((x tan 5x)/(cos 2x . cos 7x))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\:\mathrm{tan}\:\mathrm{5}{x}}{\mathrm{cos}\:\mathrm{2}{x}\:.\:\mathrm{cos}\:\mathrm{7}{x}} \\ $$

Question Number 12093    Answers: 1   Comments: 0

log_(abc) b=3 log_(abc) c=4 log_(abc) a=?

$$\mathrm{log}_{\mathrm{abc}} \mathrm{b}=\mathrm{3} \\ $$$$\mathrm{log}_{\mathrm{abc}} \mathrm{c}=\mathrm{4} \\ $$$$\mathrm{log}_{\mathrm{abc}} \mathrm{a}=? \\ $$

Question Number 12092    Answers: 0   Comments: 0

Prove that tan 70°−tan 50°+tan 10° =(√3)

$$\mathrm{Prove}\:\mathrm{that}\:\:\mathrm{tan}\:\mathrm{70}°−\mathrm{tan}\:\mathrm{50}°+\mathrm{tan}\:\mathrm{10}°\:=\sqrt{\mathrm{3}} \\ $$

Question Number 12087    Answers: 1   Comments: 0

In how many ways can 10 objects be split into two groups containing 4 and 6 objects respectively ?

$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{10}\:\mathrm{objects}\:\mathrm{be}\:\mathrm{split}\:\mathrm{into}\:\mathrm{two}\:\:\mathrm{groups}\:\mathrm{containing}\: \\ $$$$\mathrm{4}\:\mathrm{and}\:\mathrm{6}\:\mathrm{objects}\:\mathrm{respectively}\:? \\ $$

Question Number 12085    Answers: 2   Comments: 0

Question Number 12082    Answers: 1   Comments: 0

Question Number 12080    Answers: 1   Comments: 0

Question Number 12078    Answers: 1   Comments: 0

If tan^2 α = 1+2tan^2 β then prove that cos 2β =1+2cos 2α .

$$\mathrm{If}\:\mathrm{tan}\:^{\mathrm{2}} \alpha\:=\:\mathrm{1}+\mathrm{2tan}\:^{\mathrm{2}} \beta\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\:\mathrm{cos}\:\mathrm{2}\beta\:=\mathrm{1}+\mathrm{2cos}\:\mathrm{2}\alpha\:. \\ $$

Question Number 12077    Answers: 1   Comments: 0

A man travels 29 km on an open road at a certain speed. In the city, he reduce his speed by 420 km/hr, and he find that he take him the same time to cover 15 km, Find his average speed. (a) On the open road (b) In the city

$$\mathrm{A}\:\mathrm{man}\:\mathrm{travels}\:\mathrm{29}\:\mathrm{km}\:\mathrm{on}\:\mathrm{an}\:\mathrm{open}\:\mathrm{road}\:\mathrm{at}\:\mathrm{a}\:\mathrm{certain}\:\mathrm{speed}.\:\mathrm{In}\:\mathrm{the}\:\mathrm{city},\:\mathrm{he}\: \\ $$$$\mathrm{reduce}\:\mathrm{his}\:\mathrm{speed}\:\mathrm{by}\:\mathrm{420}\:\mathrm{km}/\mathrm{hr},\:\mathrm{and}\:\mathrm{he}\:\mathrm{find}\:\mathrm{that}\:\mathrm{he}\:\mathrm{take}\:\mathrm{him}\:\mathrm{the}\:\mathrm{same}\:\mathrm{time} \\ $$$$\mathrm{to}\:\mathrm{cover}\:\mathrm{15}\:\mathrm{km},\:\mathrm{Find}\:\mathrm{his}\:\mathrm{average}\:\mathrm{speed}.\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{On}\:\mathrm{the}\:\mathrm{open}\:\mathrm{road} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{In}\:\mathrm{the}\:\mathrm{city} \\ $$

Question Number 12074    Answers: 1   Comments: 0

  Pg 1889      Pg 1890      Pg 1891      Pg 1892      Pg 1893      Pg 1894      Pg 1895      Pg 1896      Pg 1897      Pg 1898   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com