Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1890

Question Number 16880    Answers: 0   Comments: 0

Find the number of positive integers less than or equal to 300 that are multiples of 3 or 5, but are not multiples of 10 or 15.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{positive}\:\mathrm{integers} \\ $$$$\mathrm{less}\:\mathrm{than}\:\mathrm{or}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{300}\:\mathrm{that}\:\mathrm{are} \\ $$$$\mathrm{multiples}\:\mathrm{of}\:\mathrm{3}\:\mathrm{or}\:\mathrm{5},\:\mathrm{but}\:\mathrm{are}\:\mathrm{not} \\ $$$$\mathrm{multiples}\:\mathrm{of}\:\mathrm{10}\:\mathrm{or}\:\mathrm{15}. \\ $$

Question Number 16879    Answers: 0   Comments: 0

Let ABCD be a parallelogram. The points M, N and P are chosen on the segments BD, BC and CD, respectively, so that CNMP is a parallelogram. Let E = AN ∩ BD and F = AP ∩ BD. Prove that [AEF] = [DFP] + [BEN].

$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{parallelogram}.\:\mathrm{The} \\ $$$$\mathrm{points}\:{M},\:{N}\:\mathrm{and}\:{P}\:\mathrm{are}\:\mathrm{chosen}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{segments}\:{BD},\:{BC}\:\mathrm{and}\:{CD}, \\ $$$$\mathrm{respectively},\:\mathrm{so}\:\mathrm{that}\:{CNMP}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{parallelogram}.\:\mathrm{Let}\:{E}\:=\:{AN}\:\cap\:{BD}\:\mathrm{and} \\ $$$${F}\:=\:{AP}\:\cap\:{BD}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\left[{AEF}\right]\:=\:\left[{DFP}\right]\:+\:\left[{BEN}\right]. \\ $$

Question Number 16878    Answers: 0   Comments: 2

Let P be a point on the circumcircle of the equilateral triangle ABC. Prove that the projections of any point Q onto the lines PA, PB and PC are the vertices of an equilateral triangle.

$$\mathrm{Let}\:{P}\:\mathrm{be}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{equilateral}\:\mathrm{triangle}\:{ABC}.\:\mathrm{Prove} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{projections}\:\mathrm{of}\:\mathrm{any}\:\mathrm{point}\:{Q} \\ $$$$\mathrm{onto}\:\mathrm{the}\:\mathrm{lines}\:{PA},\:{PB}\:\mathrm{and}\:{PC}\:\mathrm{are}\:\mathrm{the} \\ $$$$\mathrm{vertices}\:\mathrm{of}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle}. \\ $$

Question Number 16877    Answers: 0   Comments: 0

From a point on the circumcircle of an equilateral triangle ABC parallels to the sides BC, CA and AB are drawn, intersecting the sides CA, AB and BC at the points M, N, P, respectively. Prove that the points M, N and P are collinear.

$$\mathrm{From}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{of}\:\mathrm{an} \\ $$$$\mathrm{equilateral}\:\mathrm{triangle}\:{ABC}\:\mathrm{parallels}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{sides}\:{BC},\:{CA}\:\mathrm{and}\:{AB}\:\mathrm{are}\:\mathrm{drawn}, \\ $$$$\mathrm{intersecting}\:\mathrm{the}\:\mathrm{sides}\:{CA},\:{AB}\:\mathrm{and}\:{BC} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{points}\:{M},\:{N},\:{P},\:\mathrm{respectively}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{points}\:{M},\:{N}\:\mathrm{and}\:{P}\:\mathrm{are} \\ $$$$\mathrm{collinear}. \\ $$

Question Number 16876    Answers: 1   Comments: 0

In how many ways can a family of 5 brothers be seated round a table if (i) 2 brothers must seat next to each other. (ii) 2 brothers must not seat together.

$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{a}\:\mathrm{family}\:\mathrm{of}\:\mathrm{5}\:\mathrm{brothers}\:\mathrm{be}\:\mathrm{seated}\:\mathrm{round}\:\mathrm{a}\:\mathrm{table} \\ $$$$\mathrm{if}\:\left(\mathrm{i}\right)\:\mathrm{2}\:\mathrm{brothers}\:\mathrm{must}\:\mathrm{seat}\:\mathrm{next}\:\mathrm{to}\:\mathrm{each}\:\mathrm{other}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{2}\:\mathrm{brothers}\:\mathrm{must}\:\mathrm{not}\:\mathrm{seat}\:\mathrm{together}. \\ $$

Question Number 16875    Answers: 0   Comments: 0

Let P_1 , P_2 , ..., P_n be a convex polygon with the following property : for any two vertices P_i and P_j , there exists a vertex P_k such that the segment P_i P_j is seen from P_k under an angle of 60°. Prove that the polygon is an equilateral triangle.

$$\mathrm{Let}\:{P}_{\mathrm{1}} ,\:{P}_{\mathrm{2}} ,\:...,\:{P}_{{n}} \:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{polygon} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{following}\:\mathrm{property}\::\:\mathrm{for}\:\mathrm{any} \\ $$$$\mathrm{two}\:\mathrm{vertices}\:{P}_{{i}} \:\mathrm{and}\:{P}_{{j}} ,\:\mathrm{there}\:\mathrm{exists}\:\mathrm{a} \\ $$$$\mathrm{vertex}\:{P}_{{k}} \:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{segment}\:{P}_{{i}} {P}_{{j}} \\ $$$$\mathrm{is}\:\mathrm{seen}\:\mathrm{from}\:{P}_{{k}} \:\mathrm{under}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{60}°. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{polygon}\:\mathrm{is}\:\mathrm{an} \\ $$$$\mathrm{equilateral}\:\mathrm{triangle}. \\ $$

Question Number 16874    Answers: 0   Comments: 0

Let ABC be an acute triangle. The interior bisectors of the angles ∠B and ∠C meet the opposite sides at the points L and M, respectively. Prove that there exists a point K in the interior of the side BC such that ΔKLM is equilateral if and only if ∠A = 60°.

$$\mathrm{Let}\:{ABC}\:\mathrm{be}\:\mathrm{an}\:\mathrm{acute}\:\mathrm{triangle}.\:\mathrm{The} \\ $$$$\mathrm{interior}\:\mathrm{bisectors}\:\mathrm{of}\:\mathrm{the}\:\mathrm{angles}\:\angle{B}\:\mathrm{and} \\ $$$$\angle{C}\:\mathrm{meet}\:\mathrm{the}\:\mathrm{opposite}\:\mathrm{sides}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{points}\:{L}\:\mathrm{and}\:{M},\:\mathrm{respectively}.\:\mathrm{Prove} \\ $$$$\mathrm{that}\:\mathrm{there}\:\mathrm{exists}\:\mathrm{a}\:\mathrm{point}\:{K}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{interior}\:\mathrm{of}\:\mathrm{the}\:\mathrm{side}\:{BC}\:\mathrm{such}\:\mathrm{that} \\ $$$$\Delta{KLM}\:\mathrm{is}\:\mathrm{equilateral}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if} \\ $$$$\angle{A}\:=\:\mathrm{60}°. \\ $$

Question Number 16911    Answers: 0   Comments: 1

Please solve Q. 16066 or please tell me whether to post its solution or not. I don′t understood the solution.

$$\mathrm{Please}\:\mathrm{solve}\:\mathrm{Q}.\:\mathrm{16066}\:\mathrm{or}\:\mathrm{please}\:\mathrm{tell}\:\mathrm{me} \\ $$$$\mathrm{whether}\:\mathrm{to}\:\mathrm{post}\:\mathrm{its}\:\mathrm{solution}\:\mathrm{or}\:\mathrm{not}.\:\mathrm{I} \\ $$$$\mathrm{don}'\mathrm{t}\:\mathrm{understood}\:\mathrm{the}\:\mathrm{solution}. \\ $$

Question Number 16873    Answers: 0   Comments: 0

Let I be the incenter of ΔABC. It is known that for every point M ∈ (AB), one can find the points N ∈ (BC) and P ∈ (AC) such that I is the centroid of ΔMNP. Prove that ABC is an equilateral triangle.

$$\mathrm{Let}\:{I}\:\mathrm{be}\:\mathrm{the}\:\mathrm{incenter}\:\mathrm{of}\:\Delta{ABC}.\:\mathrm{It}\:\mathrm{is} \\ $$$$\mathrm{known}\:\mathrm{that}\:\mathrm{for}\:\mathrm{every}\:\mathrm{point}\:{M}\:\in\:\left({AB}\right), \\ $$$$\mathrm{one}\:\mathrm{can}\:\mathrm{find}\:\mathrm{the}\:\mathrm{points}\:{N}\:\in\:\left({BC}\right)\:\mathrm{and} \\ $$$${P}\:\in\:\left({AC}\right)\:\mathrm{such}\:\mathrm{that}\:{I}\:\mathrm{is}\:\mathrm{the}\:\mathrm{centroid}\:\mathrm{of} \\ $$$$\Delta{MNP}.\:\mathrm{Prove}\:\mathrm{that}\:{ABC}\:\mathrm{is}\:\mathrm{an} \\ $$$$\mathrm{equilateral}\:\mathrm{triangle}. \\ $$

Question Number 16868    Answers: 1   Comments: 0

In how many ways can the letters of the word. EVERMORE be arrange if the word must begin with (i) R (ii) E

$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{the}\:\mathrm{letters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word}.\:\mathrm{EVERMORE}\:\mathrm{be}\:\mathrm{arrange} \\ $$$$\mathrm{if}\:\mathrm{the}\:\mathrm{word}\:\mathrm{must}\:\mathrm{begin}\:\mathrm{with}\: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{R} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{E} \\ $$

Question Number 16859    Answers: 0   Comments: 0

In dealing with motion of projectile in air, we ignore effect of air resistance on motion. What would the trajectory look like if air resistance is included? Sketch such a trajectory and explain why you have drawn it that way.

$$\mathrm{In}\:\mathrm{dealing}\:\mathrm{with}\:\mathrm{motion}\:\mathrm{of}\:\mathrm{projectile}\:\mathrm{in} \\ $$$$\mathrm{air},\:\mathrm{we}\:\mathrm{ignore}\:\mathrm{effect}\:\mathrm{of}\:\mathrm{air}\:\mathrm{resistance} \\ $$$$\mathrm{on}\:\mathrm{motion}.\:\mathrm{What}\:\mathrm{would}\:\mathrm{the}\:\mathrm{trajectory} \\ $$$$\mathrm{look}\:\mathrm{like}\:\mathrm{if}\:\mathrm{air}\:\mathrm{resistance}\:\mathrm{is}\:\mathrm{included}? \\ $$$$\mathrm{Sketch}\:\mathrm{such}\:\mathrm{a}\:\mathrm{trajectory}\:\mathrm{and}\:\mathrm{explain} \\ $$$$\mathrm{why}\:\mathrm{you}\:\mathrm{have}\:\mathrm{drawn}\:\mathrm{it}\:\mathrm{that}\:\mathrm{way}. \\ $$

Question Number 16857    Answers: 1   Comments: 0

Suppose x and y are vectors in R^n that have the same length. show that x + y bisect the angle between x and y.

$$\mathrm{Suppose}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{are}\:\mathrm{vectors}\:\mathrm{in}\:\mathbb{R}^{\mathrm{n}} \:\mathrm{that}\:\mathrm{have}\:\mathrm{the}\:\mathrm{same}\:\mathrm{length}.\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{x}\:+\:\mathrm{y}\:\:\mathrm{bisect}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{between}\:\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}. \\ $$

Question Number 16855    Answers: 1   Comments: 0

If sin θ = (1/2), cos φ = (1/3), then θ + φ belongs to, where 0 < θ, φ < (π/2) (1) ((π/3), (π/2)) (2) ((π/2), ((2π)/3))

$$\mathrm{If}\:\mathrm{sin}\:\theta\:=\:\frac{\mathrm{1}}{\mathrm{2}},\:\mathrm{cos}\:\phi\:=\:\frac{\mathrm{1}}{\mathrm{3}},\:\mathrm{then}\:\theta\:+\:\phi \\ $$$$\mathrm{belongs}\:\mathrm{to},\:\mathrm{where}\:\mathrm{0}\:<\:\theta,\:\phi\:<\:\frac{\pi}{\mathrm{2}} \\ $$$$\left(\mathrm{1}\right)\:\left(\frac{\pi}{\mathrm{3}},\:\frac{\pi}{\mathrm{2}}\right) \\ $$$$\left(\mathrm{2}\right)\:\left(\frac{\pi}{\mathrm{2}},\:\frac{\mathrm{2}\pi}{\mathrm{3}}\right) \\ $$

Question Number 16845    Answers: 1   Comments: 3

Question Number 16829    Answers: 0   Comments: 1

Solve for x 6(4^x + 9^x ) = (13.6)^x

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x} \\ $$$$\mathrm{6}\left(\mathrm{4}^{\mathrm{x}} \:+\:\mathrm{9}^{\mathrm{x}} \right)\:=\:\left(\mathrm{13}.\mathrm{6}\right)^{\mathrm{x}} \\ $$

Question Number 16840    Answers: 0   Comments: 3

6/2(2+1)

$$\mathrm{6}/\mathrm{2}\left(\mathrm{2}+\mathrm{1}\right) \\ $$

Question Number 16839    Answers: 0   Comments: 2

∫x^e^x dx

$$\int\mathrm{x}^{\mathrm{e}^{\mathrm{x}} } \mathrm{dx} \\ $$

Question Number 16834    Answers: 0   Comments: 3

If α<β<γ<2π and cos (x+α)+cos (x+β)+cos (x+γ)=0 for all x∈R, then is γ−α=((2π)/3)?

$$\mathrm{If}\:\alpha<\beta<\gamma<\mathrm{2}\pi\:\mathrm{and} \\ $$$$\mathrm{cos}\:\left({x}+\alpha\right)+\mathrm{cos}\:\left({x}+\beta\right)+\mathrm{cos}\:\left({x}+\gamma\right)=\mathrm{0} \\ $$$$\mathrm{for}\:\mathrm{all}\:{x}\in\mathbb{R},\:\mathrm{then}\:\mathrm{is} \\ $$$$\gamma−\alpha=\frac{\mathrm{2}\pi}{\mathrm{3}}? \\ $$

Question Number 16823    Answers: 0   Comments: 2

solve for g. 6(4^x + g^x ) = 13.6^x

$$\mathrm{solve}\:\mathrm{for}\:\mathrm{g}. \\ $$$$\mathrm{6}\left(\mathrm{4}^{\mathrm{x}} \:+\:\mathrm{g}^{\mathrm{x}} \right)\:=\:\mathrm{13}.\mathrm{6}^{\mathrm{x}} \\ $$

Question Number 16836    Answers: 1   Comments: 0

Find how many number greater than 2,500 can be formed from the digit 0, 1, 2, 3, 4 if no digit can be used more than once.

$$\mathrm{Find}\:\mathrm{how}\:\mathrm{many}\:\mathrm{number}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{2},\mathrm{500}\:\mathrm{can}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{from}\:\mathrm{the}\:\mathrm{digit} \\ $$$$\mathrm{0},\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4}\:\:\mathrm{if}\:\mathrm{no}\:\mathrm{digit}\:\mathrm{can}\:\mathrm{be}\:\mathrm{used}\:\mathrm{more}\:\mathrm{than}\:\mathrm{once}. \\ $$

Question Number 16835    Answers: 1   Comments: 0

Question Number 16807    Answers: 1   Comments: 1

(a+2)sin α+(2a−1)cos α=(2a+1) then tan α=?

$$\left({a}+\mathrm{2}\right)\mathrm{sin}\:\alpha+\left(\mathrm{2}{a}−\mathrm{1}\right)\mathrm{cos}\:\alpha=\left(\mathrm{2}{a}+\mathrm{1}\right) \\ $$$$\mathrm{then}\:\mathrm{tan}\:\alpha=? \\ $$

Question Number 16803    Answers: 1   Comments: 1

Question Number 16794    Answers: 1   Comments: 0

Question Number 16789    Answers: 2   Comments: 1

Question Number 16785    Answers: 2   Comments: 2

  Pg 1885      Pg 1886      Pg 1887      Pg 1888      Pg 1889      Pg 1890      Pg 1891      Pg 1892      Pg 1893      Pg 1894   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com