Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1890

Question Number 19589    Answers: 1   Comments: 0

Let A and B is 3×3 matrix of equal number where A=symmetric matrix ....B=skew symmetric matrix and the relation... (A+B)(A−B)=(A−B)(A+B) then..the value of.. ... k (AB)^T =(−1)^k (AB) (a) −1 (c) 2 (b) 1 (d) 3

$${Let}\:{A}\:{and}\:{B}\:{is}\:\mathrm{3}×\mathrm{3}\:{matrix}\:{of}\:{equal}\:{number} \\ $$$${where}\:{A}={symmetric}\:{matrix}\: \\ $$$$....{B}={skew}\:{symmetric}\:{matrix} \\ $$$${and}\:{the}\:{relation}...\:\left({A}+{B}\right)\left({A}−{B}\right)=\left({A}−{B}\right)\left({A}+{B}\right) \\ $$$${then}..{the}\:{value}\:{of}..\:...\:{k} \\ $$$$\:\:\:\:\left({AB}\right)^{{T}} =\left(−\mathrm{1}\right)^{{k}} \left({AB}\right) \\ $$$$\left({a}\right)\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({c}\right)\:\mathrm{2} \\ $$$$ \\ $$$$\left({b}\right)\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({d}\right)\:\mathrm{3} \\ $$

Question Number 19588    Answers: 0   Comments: 0

Question Number 19586    Answers: 0   Comments: 4

Given in an isosceles triangle a lateral side b and the base angle α. Compute the distance from the centre of the inscribed circle to the centre of the circumscribed circle.

$$\mathrm{Given}\:\mathrm{in}\:\mathrm{an}\:\mathrm{isosceles}\:\mathrm{triangle}\:\mathrm{a} \\ $$$$\mathrm{lateral}\:\mathrm{side}\:\mathrm{b}\:\mathrm{and}\:\mathrm{the}\:\mathrm{base}\:\mathrm{angle}\:\alpha. \\ $$$$\mathrm{Compute}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{inscribed}\:\mathrm{circle}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circumscribed}\:\mathrm{circle}. \\ $$

Question Number 19574    Answers: 0   Comments: 5

Carol was given three numbers and was asked to add the largest of the three to the product of the other two. Instead, she multiplied the largest with the sum of the other two, but still got the right answer. What is the sum of the three numbers?

$$\mathrm{Carol}\:\mathrm{was}\:\mathrm{given}\:\mathrm{three}\:\mathrm{numbers}\:\mathrm{and} \\ $$$$\mathrm{was}\:\mathrm{asked}\:\mathrm{to}\:\mathrm{add}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{three}\:\mathrm{to}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{two}. \\ $$$$\mathrm{Instead},\:\mathrm{she}\:\mathrm{multiplied}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{two},\:\mathrm{but}\:\mathrm{still}\:\mathrm{got} \\ $$$$\mathrm{the}\:\mathrm{right}\:\mathrm{answer}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{three}\:\mathrm{numbers}? \\ $$

Question Number 19657    Answers: 0   Comments: 2

differentiate the function with respect to x 1. ((secx−1)/(secx+1))

$${differentiate}\:{the}\:{function}\:{with}\:{respect}\: \\ $$$${to}\:{x} \\ $$$$\mathrm{1}.\:\:\:\:\frac{{secx}−\mathrm{1}}{{secx}+\mathrm{1}} \\ $$

Question Number 19547    Answers: 0   Comments: 2

A matrix has N rows and 2k−1 columns. Each column is filled with M ones and N−M zeros. A given row j is “cool” if and only if Σ_(i=1) ^(2k−1) a_(ji) ≥ k. Find the minimum and the maximum number of cool rows for given N, k and M.

$$\mathrm{A}\:\mathrm{matrix}\:\mathrm{has}\:{N}\:\mathrm{rows}\:\mathrm{and}\:\mathrm{2}{k}−\mathrm{1}\: \\ $$$$\mathrm{columns}.\:\mathrm{Each}\:\mathrm{column}\:\mathrm{is}\:\mathrm{filled}\:\mathrm{with} \\ $$$${M}\:\mathrm{ones}\:\mathrm{and}\:{N}−{M}\:\mathrm{zeros}. \\ $$$$\mathrm{A}\:\mathrm{given}\:\mathrm{row}\:{j}\:\mathrm{is}\:``{cool}''\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{2}{k}−\mathrm{1}} {\sum}}{a}_{{ji}} \:\geqslant\:{k}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{maximum}\:\mathrm{number}\:\mathrm{of}\:\mathrm{cool}\:\mathrm{rows} \\ $$$$\mathrm{for}\:\mathrm{given}\:{N},\:{k}\:\mathrm{and}\:{M}. \\ $$

Question Number 19516    Answers: 1   Comments: 0

Let Akbar and Birbal together have n marbles, where n > 0. Akbar says to Birbal, “If I give you some marbles then you will have twice as many marbles as I will have.” Birbal says to Akbar, “If I give you some marbles then you will have thrice as many marbles as I will have.” What is the minimum possible value of n for which the above statements are true?

$$\mathrm{Let}\:\mathrm{Akbar}\:\mathrm{and}\:\mathrm{Birbal}\:\mathrm{together}\:\mathrm{have}\:{n} \\ $$$$\mathrm{marbles},\:\mathrm{where}\:{n}\:>\:\mathrm{0}. \\ $$$$\mathrm{Akbar}\:\mathrm{says}\:\mathrm{to}\:\mathrm{Birbal},\:``\mathrm{If}\:\mathrm{I}\:\mathrm{give}\:\mathrm{you}\:\mathrm{some} \\ $$$$\mathrm{marbles}\:\mathrm{then}\:\mathrm{you}\:\mathrm{will}\:\mathrm{have}\:\mathrm{twice}\:\mathrm{as} \\ $$$$\mathrm{many}\:\mathrm{marbles}\:\mathrm{as}\:\mathrm{I}\:\mathrm{will}\:\mathrm{have}.''\:\mathrm{Birbal} \\ $$$$\mathrm{says}\:\mathrm{to}\:\mathrm{Akbar},\:``\mathrm{If}\:\mathrm{I}\:\mathrm{give}\:\mathrm{you}\:\mathrm{some} \\ $$$$\mathrm{marbles}\:\mathrm{then}\:\mathrm{you}\:\mathrm{will}\:\mathrm{have}\:\mathrm{thrice}\:\mathrm{as} \\ $$$$\mathrm{many}\:\mathrm{marbles}\:\mathrm{as}\:\mathrm{I}\:\mathrm{will}\:\mathrm{have}.'' \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of} \\ $$$${n}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{above}\:\mathrm{statements}\:\mathrm{are} \\ $$$$\mathrm{true}? \\ $$

Question Number 19511    Answers: 1   Comments: 1

In the arrangement shown, the wedge is smooth and has a mass M. The sphere has a mass m. The system is released from rest from the position shown. There is no friction anywhere. Find the contact force between the wall and the sphere.

$$\mathrm{In}\:\mathrm{the}\:\mathrm{arrangement}\:\mathrm{shown},\:\mathrm{the}\:\mathrm{wedge} \\ $$$$\mathrm{is}\:\mathrm{smooth}\:\mathrm{and}\:\mathrm{has}\:\mathrm{a}\:\mathrm{mass}\:{M}.\:\mathrm{The}\:\mathrm{sphere} \\ $$$$\mathrm{has}\:\mathrm{a}\:\mathrm{mass}\:{m}.\:\mathrm{The}\:\mathrm{system}\:\mathrm{is}\:\mathrm{released} \\ $$$$\mathrm{from}\:\mathrm{rest}\:\mathrm{from}\:\mathrm{the}\:\mathrm{position}\:\mathrm{shown}. \\ $$$$\mathrm{There}\:\mathrm{is}\:\mathrm{no}\:\mathrm{friction}\:\mathrm{anywhere}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{contact}\:\mathrm{force}\:\mathrm{between}\:\mathrm{the}\:\mathrm{wall}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{sphere}. \\ $$

Question Number 19509    Answers: 1   Comments: 1

Blocks P and R starts from rest and moves to the right with acceleration a_P = 12t m/s^2 and a_R = 3 m/s^2 . Here t is in seconds. The time when block Q again comes to rest is

$$\mathrm{Blocks}\:{P}\:\mathrm{and}\:{R}\:\mathrm{starts}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{and} \\ $$$$\mathrm{moves}\:\mathrm{to}\:\mathrm{the}\:\mathrm{right}\:\mathrm{with}\:\mathrm{acceleration} \\ $$$${a}_{{P}} \:=\:\mathrm{12}{t}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \:\mathrm{and}\:{a}_{{R}} \:=\:\mathrm{3}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} .\:\mathrm{Here}\:{t} \\ $$$$\mathrm{is}\:\mathrm{in}\:\mathrm{seconds}.\:\mathrm{The}\:\mathrm{time}\:\mathrm{when}\:\mathrm{block}\:{Q} \\ $$$$\mathrm{again}\:\mathrm{comes}\:\mathrm{to}\:\mathrm{rest}\:\mathrm{is} \\ $$

Question Number 19508    Answers: 0   Comments: 0

Prove that the length of perpendicular drawn from the point z_0 to the straight line α^ z + αz^ + c = 0 is p = ∣((α^ z_0 + αz_0 ^ + c)/(2 ∣α∣))∣.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{perpendicular} \\ $$$$\mathrm{drawn}\:\mathrm{from}\:\mathrm{the}\:\mathrm{point}\:{z}_{\mathrm{0}} \:\mathrm{to}\:\mathrm{the}\:\mathrm{straight} \\ $$$$\mathrm{line}\:\bar {\alpha}{z}\:+\:\alpha\bar {{z}}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{is} \\ $$$${p}\:=\:\mid\frac{\bar {\alpha}{z}_{\mathrm{0}} \:+\:\alpha\bar {{z}}_{\mathrm{0}} \:+\:{c}}{\mathrm{2}\:\mid\alpha\mid}\mid. \\ $$

Question Number 19507    Answers: 1   Comments: 0

Prove that three points z_1 , z_2 , z_3 are collinear if determinant ((z_1 ,z_1 ^ ,1),(z_2 ,z_2 ^ ,1),(z_3 ,z_3 ^ ,1))= 0

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{three}\:\mathrm{points}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{are} \\ $$$$\mathrm{collinear}\:\mathrm{if}\:\begin{vmatrix}{{z}_{\mathrm{1}} }&{\bar {{z}}_{\mathrm{1}} }&{\mathrm{1}}\\{{z}_{\mathrm{2}} }&{\bar {{z}}_{\mathrm{2}} }&{\mathrm{1}}\\{{z}_{\mathrm{3}} }&{\bar {{z}}_{\mathrm{3}} }&{\mathrm{1}}\end{vmatrix}=\:\mathrm{0} \\ $$

Question Number 19506    Answers: 1   Comments: 0

Prove that the equation of the line joining the points z_1 and z_2 can be put in the form z = tz_1 + (1 − t)z_2 , where t is a parameter.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{joining}\:\mathrm{the}\:\mathrm{points}\:{z}_{\mathrm{1}} \:\mathrm{and}\:{z}_{\mathrm{2}} \:\mathrm{can}\:\mathrm{be}\:\mathrm{put} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:{z}\:=\:{tz}_{\mathrm{1}} \:+\:\left(\mathrm{1}\:−\:{t}\right){z}_{\mathrm{2}} ,\:\mathrm{where} \\ $$$${t}\:\mathrm{is}\:\mathrm{a}\:\mathrm{parameter}. \\ $$

Question Number 19505    Answers: 1   Comments: 0

Prove that two straight lines with complex slopes μ_1 and μ_2 are parallel and perpendicular according as μ_1 = μ_2 and μ_1 + μ_2 = 0. Hence if the straight lines α^ z + αz^ + c = 0 and β^ z + βz^ + k = 0 are parallel and perpendicular according as α^ β − αβ^ = 0 and α^ β + αβ^ = 0.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{two}\:\mathrm{straight}\:\mathrm{lines}\:\mathrm{with} \\ $$$$\mathrm{complex}\:\mathrm{slopes}\:\mu_{\mathrm{1}} \:\mathrm{and}\:\mu_{\mathrm{2}} \:\mathrm{are}\:\mathrm{parallel} \\ $$$$\mathrm{and}\:\mathrm{perpendicular}\:\mathrm{according}\:\mathrm{as}\:\mu_{\mathrm{1}} \:=\:\mu_{\mathrm{2}} \\ $$$$\mathrm{and}\:\mu_{\mathrm{1}} \:+\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\:\mathrm{Hence}\:\mathrm{if}\:\mathrm{the}\:\mathrm{straight} \\ $$$$\mathrm{lines}\:\bar {\alpha}{z}\:+\:\alpha\bar {{z}}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{and}\:\bar {\beta}{z}\:+\:\beta\bar {{z}}\:+\:{k}\:=\:\mathrm{0} \\ $$$$\mathrm{are}\:\mathrm{parallel}\:\mathrm{and}\:\mathrm{perpendicular}\:\mathrm{according} \\ $$$$\mathrm{as}\:\bar {\alpha}\beta\:−\:\alpha\bar {\beta}\:=\:\mathrm{0}\:\mathrm{and}\:\bar {\alpha}\beta\:+\:\alpha\bar {\beta}\:=\:\mathrm{0}. \\ $$

Question Number 19531    Answers: 1   Comments: 0

Question Number 19557    Answers: 1   Comments: 3

Question Number 19556    Answers: 0   Comments: 0

Question Number 19499    Answers: 1   Comments: 0

Find the last digit of 2^(253)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{digit}\:\mathrm{of}\:\:\mathrm{2}^{\mathrm{253}} \\ $$

Question Number 19554    Answers: 0   Comments: 0

proof (a^− +b^− ).c^− =a^− .c^− +b^− .c^−

$${proof}\:\left(\overset{−} {{a}}+\overset{−} {{b}}\right).\overset{−} {{c}}=\overset{−} {{a}}.\overset{−} {{c}}+\overset{−} {{b}}.\overset{−} {{c}} \\ $$

Question Number 19472    Answers: 0   Comments: 3

A fishing boat is anchored 9 km away from the nearest point on the shore. A messanger must be sent from the fishing boat to a camp, 15 km from the point on shore closest to boat. If the messanger can walk at a speed of 5 km per hour and can row at 4 km/h, determine the distance of that point (in km) from the shore, where he must land so as to reach the shore in least possible time.

$$\mathrm{A}\:\mathrm{fishing}\:\mathrm{boat}\:\mathrm{is}\:\mathrm{anchored}\:\mathrm{9}\:\mathrm{km}\:\mathrm{away} \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{nearest}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{shore}.\:\mathrm{A} \\ $$$$\mathrm{messanger}\:\mathrm{must}\:\mathrm{be}\:\mathrm{sent}\:\mathrm{from}\:\mathrm{the}\:\mathrm{fishing} \\ $$$$\mathrm{boat}\:\mathrm{to}\:\mathrm{a}\:\mathrm{camp},\:\mathrm{15}\:\mathrm{km}\:\mathrm{from}\:\mathrm{the}\:\mathrm{point} \\ $$$$\mathrm{on}\:\mathrm{shore}\:\mathrm{closest}\:\mathrm{to}\:\mathrm{boat}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{messanger} \\ $$$$\mathrm{can}\:\mathrm{walk}\:\mathrm{at}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{5}\:\mathrm{km}\:\mathrm{per}\:\mathrm{hour} \\ $$$$\mathrm{and}\:\mathrm{can}\:\mathrm{row}\:\mathrm{at}\:\mathrm{4}\:\mathrm{km}/\mathrm{h},\:\mathrm{determine}\:\mathrm{the} \\ $$$$\mathrm{distance}\:\mathrm{of}\:\mathrm{that}\:\mathrm{point}\:\left(\mathrm{in}\:\mathrm{km}\right)\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{shore},\:\mathrm{where}\:\mathrm{he}\:\mathrm{must}\:\mathrm{land}\:\mathrm{so}\:\mathrm{as}\:\mathrm{to} \\ $$$$\mathrm{reach}\:\mathrm{the}\:\mathrm{shore}\:\mathrm{in}\:\mathrm{least}\:\mathrm{possible}\:\mathrm{time}. \\ $$

Question Number 19455    Answers: 1   Comments: 0

Prove that if z = cos 6° + i sin 6°, then (1/(z^2 + 1)) − ((iz)/(z^4 − 1)) + ((iz^3 )/(z^8 − 1)) + ((iz^7 )/(z^(16) − 1)) = 0.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:{z}\:=\:\mathrm{cos}\:\mathrm{6}°\:+\:{i}\:\mathrm{sin}\:\mathrm{6}°,\:\mathrm{then} \\ $$$$\frac{\mathrm{1}}{{z}^{\mathrm{2}} \:+\:\mathrm{1}}\:−\:\frac{{iz}}{{z}^{\mathrm{4}} \:−\:\mathrm{1}}\:+\:\frac{{iz}^{\mathrm{3}} }{{z}^{\mathrm{8}} \:−\:\mathrm{1}}\:+\:\frac{{iz}^{\mathrm{7}} }{{z}^{\mathrm{16}} \:−\:\mathrm{1}}\:=\:\mathrm{0}. \\ $$

Question Number 19435    Answers: 1   Comments: 0

If α = cos ((2π)/5) + i sin ((2π)/5) , then find the value of α + α^2 + α^3 + α^4 .

$$\mathrm{If}\:\alpha\:=\:\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{5}}\:+\:{i}\:\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{5}}\:,\:\mathrm{then}\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\alpha\:+\:\alpha^{\mathrm{2}} \:+\:\alpha^{\mathrm{3}} \:+\:\alpha^{\mathrm{4}} . \\ $$

Question Number 19434    Answers: 1   Comments: 0

If (((1 + i(√3))/(1 − i(√3))))^n is an integer, then n is

$$\mathrm{If}\:\left(\frac{\mathrm{1}\:+\:{i}\sqrt{\mathrm{3}}}{\mathrm{1}\:−\:{i}\sqrt{\mathrm{3}}}\right)^{{n}} \:\mathrm{is}\:\mathrm{an}\:\mathrm{integer},\:\mathrm{then}\:{n}\:\mathrm{is} \\ $$

Question Number 19433    Answers: 1   Comments: 0

(((√(5 + 12i)) + (√(5 − 12i)))/((√(5 + 12i)) − (√(5 − 12i)))) =

$$\frac{\sqrt{\mathrm{5}\:+\:\mathrm{12}{i}}\:+\:\sqrt{\mathrm{5}\:−\:\mathrm{12}{i}}}{\sqrt{\mathrm{5}\:+\:\mathrm{12}{i}}\:−\:\sqrt{\mathrm{5}\:−\:\mathrm{12}{i}}}\:= \\ $$

Question Number 19419    Answers: 1   Comments: 1

sin z=200 find z

$$\mathrm{sin}\:\boldsymbol{{z}}=\mathrm{200} \\ $$$$ \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{z}} \\ $$

Question Number 19415    Answers: 1   Comments: 0

PS is a line segment of length 4 and O is the midpoint of PS. A semicircular arc is drawn with PS as diameter. Let X be the midpoint of this arc. Q and R are points on the arc PXS such that QR is parallel to PS and the semicircular arc drawn with QR as diameter is tangent to PS. What is the area of the region QXROQ bounded by the two semicircular arcs?

$${PS}\:\mathrm{is}\:\mathrm{a}\:\mathrm{line}\:\mathrm{segment}\:\mathrm{of}\:\mathrm{length}\:\mathrm{4}\:\mathrm{and}\:{O} \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:{PS}.\:\mathrm{A}\:\mathrm{semicircular} \\ $$$$\mathrm{arc}\:\mathrm{is}\:\mathrm{drawn}\:\mathrm{with}\:{PS}\:\mathrm{as}\:\mathrm{diameter}.\:\mathrm{Let} \\ $$$${X}\:\mathrm{be}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:\mathrm{this}\:\mathrm{arc}.\:{Q}\:\mathrm{and}\:{R} \\ $$$$\mathrm{are}\:\mathrm{points}\:\mathrm{on}\:\mathrm{the}\:\mathrm{arc}\:{PXS}\:\mathrm{such}\:\mathrm{that}\:{QR} \\ $$$$\mathrm{is}\:\mathrm{parallel}\:\mathrm{to}\:{PS}\:\mathrm{and}\:\mathrm{the}\:\mathrm{semicircular} \\ $$$$\mathrm{arc}\:\mathrm{drawn}\:\mathrm{with}\:{QR}\:\mathrm{as}\:\mathrm{diameter}\:\mathrm{is} \\ $$$$\mathrm{tangent}\:\mathrm{to}\:{PS}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{region}\:{QXROQ}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{the}\:\mathrm{two} \\ $$$$\mathrm{semicircular}\:\mathrm{arcs}? \\ $$

Question Number 19413    Answers: 1   Comments: 1

How many integer pairs (x, y) satisfy x^2 + 4y^2 − 2xy − 2x − 4y − 8 = 0?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{integer}\:\mathrm{pairs}\:\left({x},\:{y}\right)\:\mathrm{satisfy} \\ $$$${x}^{\mathrm{2}} \:+\:\mathrm{4}{y}^{\mathrm{2}} \:−\:\mathrm{2}{xy}\:−\:\mathrm{2}{x}\:−\:\mathrm{4}{y}\:−\:\mathrm{8}\:=\:\mathrm{0}? \\ $$

  Pg 1885      Pg 1886      Pg 1887      Pg 1888      Pg 1889      Pg 1890      Pg 1891      Pg 1892      Pg 1893      Pg 1894   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com