Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1884

Question Number 13237    Answers: 1   Comments: 2

Question Number 13236    Answers: 0   Comments: 16

For positive a,b,c such that a b c=1 show that a^(b+c) b^(c+a) c^(a+b) ≤1 solution: a^(b+c) b^(c+a) c^(a+b) =(a^b a^c b^c b^a c^a c^b ) =(b×c)^a (a×c)^b (a×b)^c =(a^0 ×b×c)^a (a×b^0 ×c)^b (a×b×c^0 )^c ≤(a×b×c)^(a ) (a×b^ × c)^b (a×b×c)^c ≤(1)^a (1)^b (1)^c ;since a b c=1 ≤1

$${For}\:{positive}\:\:{a},{b},{c}\:\:{such}\:{that}\:\:{a}\:{b}\:{c}=\mathrm{1} \\ $$$${show}\:{that}\:\:{a}^{{b}+{c}} \:\:{b}^{{c}+{a}} \:\:{c}^{{a}+{b}} \:\leqslant\mathrm{1} \\ $$$${solution}: \\ $$$${a}^{{b}+{c}} \:\:{b}^{{c}+{a}} \:\:{c}^{{a}+{b}} \:=\left({a}^{{b}} {a}^{{c}} \:{b}^{{c}} {b}^{{a}} \:\:{c}^{{a}} {c}^{{b}} \right) \\ $$$$\:\:\:\:\:\:=\left({b}×{c}\right)^{{a}} \:\left({a}×{c}\right)^{{b}} \:\left({a}×{b}\right)^{{c}} \\ $$$$\:\:\:\:\:\:\:=\left({a}^{\mathrm{0}} ×{b}×{c}\right)^{{a}} \:\left({a}×{b}^{\mathrm{0}} ×{c}\right)^{{b}} \left({a}×{b}×{c}^{\mathrm{0}} \right)^{{c}} \\ $$$$\:\:\:\:\:\:\:\leqslant\left({a}×{b}×{c}\right)^{{a}\:\:\:\:} \left({a}×{b}^{} ×\:{c}\right)^{{b}} \:\left({a}×{b}×{c}\right)^{{c}} \\ $$$$\:\:\:\:\:\:\:\leqslant\left(\mathrm{1}\right)^{{a}} \:\left(\mathrm{1}\right)^{{b}} \:\left(\mathrm{1}\right)^{{c}} \:\:\:\:;{since}\:\:{a}\:{b}\:{c}=\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\leqslant\mathrm{1} \\ $$

Question Number 13234    Answers: 2   Comments: 0

The angle of elevation of the sun is 27°. A man is 180 cm tall . How long is his shadow. Give your answer to the nearest 10cm

$$\mathrm{The}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{elevation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sun}\:\mathrm{is}\:\mathrm{27}°.\:\:\mathrm{A}\:\mathrm{man}\:\mathrm{is}\:\mathrm{180}\:\mathrm{cm}\:\mathrm{tall}\:.\:\mathrm{How}\:\mathrm{long}\:\mathrm{is} \\ $$$$\mathrm{his}\:\mathrm{shadow}.\:\mathrm{Give}\:\mathrm{your}\:\mathrm{answer}\:\mathrm{to}\:\mathrm{the}\:\mathrm{nearest}\:\:\mathrm{10cm} \\ $$

Question Number 13228    Answers: 0   Comments: 5

Question Number 13226    Answers: 2   Comments: 0

if x^3 +y^3 =3axy,find dy/dx in terms of x and y and prove that dy/dx cannot be equal to -1 for finite values of x and y except x=y. please help

$$\mathrm{if}\:\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} =\mathrm{3axy},\mathrm{find}\:\mathrm{dy}/\mathrm{dx}\:\mathrm{in}\:\mathrm{terms} \\ $$$$\mathrm{of}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{and}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{dy}/\mathrm{dx}\: \\ $$$$\mathrm{cannot}\:\mathrm{be}\:\mathrm{equal}\:\mathrm{to}\:-\mathrm{1}\:\mathrm{for}\:\mathrm{finite} \\ $$$$\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{except}\:\mathrm{x}=\mathrm{y}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{help}\: \\ $$

Question Number 13224    Answers: 1   Comments: 3

Question Number 13206    Answers: 0   Comments: 0

An open box whose shape is a cuboid has dimensions 9 cm by 7 cm by 6 cm. Find (i) The outer surface area of the box (ii) The volume of the box

$$\mathrm{An}\:\mathrm{open}\:\mathrm{box}\:\mathrm{whose}\:\mathrm{shape}\:\mathrm{is}\:\mathrm{a}\:\mathrm{cuboid}\:\mathrm{has}\:\mathrm{dimensions}\:\mathrm{9}\:\mathrm{cm}\:\mathrm{by}\:\mathrm{7}\:\mathrm{cm}\:\mathrm{by}\:\mathrm{6}\:\mathrm{cm}. \\ $$$$\mathrm{Find} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{The}\:\mathrm{outer}\:\mathrm{surface}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{box} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{The}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{box} \\ $$

Question Number 13201    Answers: 5   Comments: 1

In a ΔABC prove that: ((sin A + sin B)/2) ≤ sin (((A + B)/2))

$$\mathrm{In}\:\mathrm{a}\:\Delta{ABC}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{sin}\:{A}\:+\:\mathrm{sin}\:\mathrm{B}}{\mathrm{2}}\:\leqslant\:\mathrm{sin}\:\left(\frac{{A}\:+\:{B}}{\mathrm{2}}\right) \\ $$

Question Number 13200    Answers: 2   Comments: 0

(6)^(1/(5)^(1/(2)^(1/(√3)) ) ) = x How to write x in standard form?

$$\sqrt[{\sqrt[{\sqrt[{\sqrt{\mathrm{3}}}]{\mathrm{2}}}]{\mathrm{5}}}]{\mathrm{6}}\:=\:{x} \\ $$$$\mathrm{How}\:\mathrm{to}\:\mathrm{write}\:{x}\:\mathrm{in}\:\mathrm{standard}\:\mathrm{form}? \\ $$

Question Number 13194    Answers: 1   Comments: 0

Question Number 13191    Answers: 0   Comments: 4

Can we ask here Chemistry or Physics doubts because I am preparing for JEE?

$$\mathrm{Can}\:\mathrm{we}\:\mathrm{ask}\:\mathrm{here}\:\mathrm{Chemistry}\:\mathrm{or}\:\mathrm{Physics} \\ $$$$\mathrm{doubts}\:\mathrm{because}\:\mathrm{I}\:\mathrm{am}\:\mathrm{preparing}\:\mathrm{for}\:\mathrm{JEE}? \\ $$

Question Number 13166    Answers: 2   Comments: 0

Find the values of x and y x^2 − 2xy − y^2 = 14 ............ equation (i) 2x^2 + 3xy + y^2 = − 2 ............ equation (ii)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\:\mathrm{x}\:\:\mathrm{and}\:\:\mathrm{y} \\ $$$$ \\ $$$$\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{2xy}\:−\:\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{14}\:\:\:\:\:\:\:\:\:............\:\:\mathrm{equation}\:\left(\mathrm{i}\right) \\ $$$$\mathrm{2x}^{\mathrm{2}} \:+\:\mathrm{3xy}\:+\:\mathrm{y}^{\mathrm{2}} \:=\:−\:\mathrm{2}\:\:\:\:\:............\:\mathrm{equation}\:\left(\mathrm{ii}\right) \\ $$

Question Number 13155    Answers: 2   Comments: 0

Question Number 13154    Answers: 2   Comments: 0

Find the smallest number such that when divided by 18 the remainder is 17, When divided by 20 the remainder is 19. and when divided by 24 the remainder is 23.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that}\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{18}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{17}, \\ $$$$\mathrm{When}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{20}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{19}.\:\mathrm{and}\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{24}\:\mathrm{the}\:\mathrm{remainder}\: \\ $$$$\mathrm{is}\:\mathrm{23}.\: \\ $$

Question Number 13153    Answers: 1   Comments: 3

Question Number 13152    Answers: 1   Comments: 0

Solve: 5^(log(x)) + logx^5 = 25

$$\mathrm{Solve}:\:\:\mathrm{5}^{\mathrm{log}\left(\mathrm{x}\right)} \:+\:\mathrm{logx}^{\mathrm{5}} \:=\:\mathrm{25} \\ $$

Question Number 13151    Answers: 1   Comments: 0

Question Number 13145    Answers: 1   Comments: 0

((64))^(1/(3)^(1/(√5)) ) = x How to write x into fraction exponent form?

$$\sqrt[{\sqrt[{\sqrt{\mathrm{5}}}]{\mathrm{3}}}]{\mathrm{64}}\:=\:{x} \\ $$$$\mathrm{How}\:\mathrm{to}\:\mathrm{write}\:{x}\:\mathrm{into}\:\mathrm{fraction}\:\mathrm{exponent}\:\mathrm{form}? \\ $$

Question Number 13143    Answers: 0   Comments: 1

Find the point (x,y) which lies 8 unit from the origin, along the terminal line of 155°.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{which}\:\mathrm{lies}\:\mathrm{8}\:\mathrm{unit}\:\mathrm{from}\:\mathrm{the}\:\mathrm{origin},\:\:\mathrm{along}\:\mathrm{the}\:\mathrm{terminal}\:\mathrm{line} \\ $$$$\mathrm{of}\:\mathrm{155}°.\: \\ $$

Question Number 13142    Answers: 0   Comments: 1

Find the height PQ of a tower of an observant at a point O, 135 m from the foot of the tower. Determine the angle of elevation of the tower.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{height}\:\mathrm{PQ}\:\mathrm{of}\:\mathrm{a}\:\mathrm{tower}\:\mathrm{of}\:\mathrm{an}\:\mathrm{observant}\:\mathrm{at}\:\mathrm{a}\:\mathrm{point}\:\mathrm{O},\:\mathrm{135}\:\mathrm{m}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{foot}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tower}.\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{elevation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tower}. \\ $$

Question Number 13141    Answers: 1   Comments: 3

Question Number 13140    Answers: 2   Comments: 1

Question Number 13223    Answers: 0   Comments: 1

If a, b, c are sides of triangle show that (1 + ((b−c)/a))^a (1 + ((c−a)/b))^b (1 + ((a−b)/c))^c < 1

$$\mathrm{If}\:{a},\:{b},\:{c}\:\mathrm{are}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{triangle}\:\mathrm{show}\:\mathrm{that} \\ $$$$\left(\mathrm{1}\:+\:\frac{{b}−{c}}{{a}}\right)^{{a}} \left(\mathrm{1}\:+\:\frac{{c}−{a}}{{b}}\right)^{{b}} \left(\mathrm{1}\:+\:\frac{{a}−{b}}{{c}}\right)^{{c}} \:<\:\mathrm{1} \\ $$

Question Number 13128    Answers: 0   Comments: 0

If [x] stands for the greatest integer function, the value of ∫_( 4) ^( 10) (([x^2 ])/([x^2 −28x+196]+[x^2 ])) dx is

$$\mathrm{If}\:\:\left[{x}\right]\:\mathrm{stands}\:\mathrm{for}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{integer} \\ $$$$\mathrm{function},\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\: \\ $$$$\underset{\:\mathrm{4}} {\overset{\:\:\:\:\mathrm{10}} {\int}}\:\frac{\left[{x}^{\mathrm{2}} \right]}{\left[{x}^{\mathrm{2}} −\mathrm{28}{x}+\mathrm{196}\right]+\left[{x}^{\mathrm{2}} \right]}\:{dx}\:\mathrm{is} \\ $$

Question Number 13127    Answers: 0   Comments: 0

Question Number 13121    Answers: 1   Comments: 0

Find the value of : (2/(15)) + (2/(35)) + (2/(63)) + (2/(99)) + ... + (2/(9999))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\::\:\:\frac{\mathrm{2}}{\mathrm{15}}\:+\:\frac{\mathrm{2}}{\mathrm{35}}\:+\:\frac{\mathrm{2}}{\mathrm{63}}\:+\:\frac{\mathrm{2}}{\mathrm{99}}\:+\:...\:+\:\frac{\mathrm{2}}{\mathrm{9999}} \\ $$

  Pg 1879      Pg 1880      Pg 1881      Pg 1882      Pg 1883      Pg 1884      Pg 1885      Pg 1886      Pg 1887      Pg 1888   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com