For positive a,b,c such that a b c=1
show that a^(b+c) b^(c+a) c^(a+b) ≤1
solution:
a^(b+c) b^(c+a) c^(a+b) =(a^b a^c b^c b^a c^a c^b )
=(b×c)^a (a×c)^b (a×b)^c
=(a^0 ×b×c)^a (a×b^0 ×c)^b (a×b×c^0 )^c
≤(a×b×c)^(a ) (a×b^ × c)^b (a×b×c)^c
≤(1)^a (1)^b (1)^c ;since a b c=1
≤1
|