Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1881

Question Number 18486    Answers: 0   Comments: 0

Why ionic radii of^(35) Cl <^(37) Cl^− ?

$$\mathrm{Why}\:\mathrm{ionic}\:\mathrm{radii}\:\mathrm{of}\:^{\mathrm{35}} \mathrm{Cl}\:<\:^{\mathrm{37}} \mathrm{Cl}^{−} ? \\ $$

Question Number 18477    Answers: 0   Comments: 0

F[topology]={G⊂X.G is finit.} please sol it

$$\mathscr{F}\left[{topology}\right]=\left\{{G}\subset{X}.{G}\:{is}\:{finit}.\right\} \\ $$$${please}\:{sol}\:{it} \\ $$

Question Number 18474    Answers: 1   Comments: 0

Assertion-Reason Type Question STATEMENT-1 : f(x) = log_(cosx) sinx is well defined in (0, (π/2)). and STATEMENT-2 : sinx and cosx are positive in (0, (π/2)).

$$\boldsymbol{\mathrm{Assertion}}-\boldsymbol{\mathrm{Reason}}\:\boldsymbol{\mathrm{Type}}\:\boldsymbol{\mathrm{Question}} \\ $$$$\mathrm{STATEMENT}-\mathrm{1}\::\:{f}\left({x}\right)\:=\:\mathrm{log}_{\mathrm{cos}{x}} \mathrm{sin}{x}\:\mathrm{is} \\ $$$$\mathrm{well}\:\mathrm{defined}\:\mathrm{in}\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\right). \\ $$$$\boldsymbol{\mathrm{and}} \\ $$$$\mathrm{STATEMENT}-\mathrm{2}\::\:\mathrm{sin}{x}\:\mathrm{and}\:\mathrm{cos}{x}\:\mathrm{are} \\ $$$$\mathrm{positive}\:\mathrm{in}\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\right). \\ $$

Question Number 18472    Answers: 1   Comments: 0

The general solution of 2^(sin x) + 2^(cos x) = 2^(1−(1/(√2))) is

$$\mathrm{The}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{2}^{\mathrm{sin}\:{x}} \:+\:\mathrm{2}^{\mathrm{cos}\:{x}} \\ $$$$=\:\mathrm{2}^{\mathrm{1}−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}} \:\mathrm{is} \\ $$

Question Number 18466    Answers: 1   Comments: 0

The sum of the digits of a two digit number is 5 and their difference is 3. Find the number.

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{a}\:\mathrm{two}\:\mathrm{digit} \\ $$$$\mathrm{number}\:\mathrm{is}\:\mathrm{5}\:\mathrm{and}\:\mathrm{their}\:\mathrm{difference}\:\mathrm{is}\:\mathrm{3}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}. \\ $$

Question Number 18465    Answers: 1   Comments: 0

The sum of the digits of a two digit number is 5 and their difference is 3. Find the number.

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{a}\:\mathrm{two}\:\mathrm{digit} \\ $$$$\mathrm{number}\:\mathrm{is}\:\mathrm{5}\:\mathrm{and}\:\mathrm{their}\:\mathrm{difference}\:\mathrm{is}\:\mathrm{3}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}. \\ $$

Question Number 18464    Answers: 1   Comments: 0

3 numbers are chosen from 1 to 30. The probability that they are not consecutive is

$$\mathrm{3}\:\mathrm{numbers}\:\mathrm{are}\:\mathrm{chosen}\:\mathrm{from}\:\mathrm{1}\:\mathrm{to}\:\mathrm{30}.\:\mathrm{The} \\ $$$$\mathrm{probability}\:\mathrm{that}\:\mathrm{they}\:\mathrm{are}\:\mathrm{not}\:\mathrm{consecutive} \\ $$$$\mathrm{is} \\ $$

Question Number 18463    Answers: 1   Comments: 0

The solid angle subtended by a spherical surface of radius R at its centre is (π/2) steradian, then the surface area of corresponding spherical section is

$$\mathrm{The}\:\mathrm{solid}\:\mathrm{angle}\:\mathrm{subtended}\:\mathrm{by}\:\mathrm{a}\:\mathrm{spherical} \\ $$$$\mathrm{surface}\:\mathrm{of}\:\mathrm{radius}\:{R}\:\mathrm{at}\:\mathrm{its}\:\mathrm{centre}\:\mathrm{is}\:\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{steradian},\:\mathrm{then}\:\mathrm{the}\:\mathrm{surface}\:\mathrm{area}\:\mathrm{of} \\ $$$$\mathrm{corresponding}\:\mathrm{spherical}\:\mathrm{section}\:\mathrm{is} \\ $$

Question Number 18461    Answers: 1   Comments: 0

Question Number 18460    Answers: 1   Comments: 0

Question Number 18457    Answers: 1   Comments: 0

The number of solutions of the equation sin θ + cos θ = 1 + sin θ cos θ in the interval [0, 4π] is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{sin}\:\theta\:+\:\mathrm{cos}\:\theta\:=\:\mathrm{1}\:+\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{interval}\:\left[\mathrm{0},\:\mathrm{4}\pi\right]\:\mathrm{is} \\ $$

Question Number 18456    Answers: 1   Comments: 0

The complete solution of the equation sin 2x − 12(sin x − cos x) + 12 = 0 is given by (1) x = 2nπ + (π/2), (2n − 1)(π/4), n ∈ Z (2) x = nπ + (π/2), (2n + 1)π, n ∈ Z (3) x = 2nπ + (π/2), (2n + 1)π, n ∈ Z (4) x = nπ + (π/2), (2n − 1)π, n ∈ Z

$$\mathrm{The}\:\mathrm{complete}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{sin}\:\mathrm{2}{x}\:−\:\mathrm{12}\left(\mathrm{sin}\:{x}\:−\:\mathrm{cos}\:{x}\right)\:+\:\mathrm{12}\:=\:\mathrm{0}\:\mathrm{is} \\ $$$$\mathrm{given}\:\mathrm{by} \\ $$$$\left(\mathrm{1}\right)\:{x}\:=\:\mathrm{2}{n}\pi\:+\:\frac{\pi}{\mathrm{2}},\:\left(\mathrm{2}{n}\:−\:\mathrm{1}\right)\frac{\pi}{\mathrm{4}},\:{n}\:\in\:{Z} \\ $$$$\left(\mathrm{2}\right)\:{x}\:=\:{n}\pi\:+\:\frac{\pi}{\mathrm{2}},\:\left(\mathrm{2}{n}\:+\:\mathrm{1}\right)\pi,\:{n}\:\in\:{Z} \\ $$$$\left(\mathrm{3}\right)\:{x}\:=\:\mathrm{2}{n}\pi\:+\:\frac{\pi}{\mathrm{2}},\:\left(\mathrm{2}{n}\:+\:\mathrm{1}\right)\pi,\:{n}\:\in\:{Z} \\ $$$$\left(\mathrm{4}\right)\:{x}\:=\:{n}\pi\:+\:\frac{\pi}{\mathrm{2}},\:\left(\mathrm{2}{n}\:−\:\mathrm{1}\right)\pi,\:{n}\:\in\:{Z} \\ $$

Question Number 18455    Answers: 1   Comments: 0

The equation cosec (x/2) + cosec (y/2) + cosec (z/2) = 6, where 0 < x, y, z < (π/2) and x + y + z = π, have (1) Three ordered triplet (x, y, z) solutions (2) Two ordered triplet (x, y, z) solutions (3) Just one ordered triplet (x, y, z) solution (4) No ordered triplet (x, y, z) solution

$$\mathrm{The}\:\mathrm{equation}\:\mathrm{cosec}\:\frac{{x}}{\mathrm{2}}\:+\:\mathrm{cosec}\:\frac{{y}}{\mathrm{2}}\:+ \\ $$$$\mathrm{cosec}\:\frac{{z}}{\mathrm{2}}\:=\:\mathrm{6},\:\mathrm{where}\:\mathrm{0}\:<\:{x},\:{y},\:{z}\:<\:\frac{\pi}{\mathrm{2}}\:\mathrm{and} \\ $$$${x}\:+\:{y}\:+\:{z}\:=\:\pi,\:\mathrm{have} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Three}\:\mathrm{ordered}\:\mathrm{triplet}\:\left({x},\:{y},\:{z}\right) \\ $$$$\mathrm{solutions} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Two}\:\mathrm{ordered}\:\mathrm{triplet}\:\left({x},\:{y},\:{z}\right) \\ $$$$\mathrm{solutions} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Just}\:\mathrm{one}\:\mathrm{ordered}\:\mathrm{triplet}\:\left({x},\:{y},\:{z}\right) \\ $$$$\mathrm{solution} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{No}\:\mathrm{ordered}\:\mathrm{triplet}\:\left({x},\:{y},\:{z}\right)\:\mathrm{solution} \\ $$

Question Number 18450    Answers: 0   Comments: 0

A $4000 note is signed, for 30 days at a discount rate of 12%. Find the proceeds. I′m not sure whether the $4000 is bank discount, principal or maturity value. Please help me

$${A}\:\$\mathrm{4000}\:{note}\:{is}\:{signed},\:{for}\:\mathrm{30}\:{days} \\ $$$${at}\:{a}\:{discount}\:{rate}\:{of}\:\mathrm{12\%}.\:{Find}\:{the} \\ $$$${proceeds}. \\ $$$$ \\ $$$${I}'{m}\:{not}\:{sure}\:{whether}\:{the}\:\$\mathrm{4000}\:{is} \\ $$$${bank}\:{discount},\:{principal}\:{or}\:{maturity}\:{value}. \\ $$$$ \\ $$$${Please}\:{help}\:{me} \\ $$

Question Number 18448    Answers: 1   Comments: 0

If a, b, c, d are in GP and a^x = b^y = c^z = d^u , then x, y, z, u are in

$$\mathrm{If}\:\:{a},\:{b},\:{c},\:{d}\:\mathrm{are}\:\mathrm{in}\:\mathrm{GP}\:\mathrm{and}\:\:{a}^{{x}} =\:{b}^{{y}} =\:{c}^{{z}} =\:{d}^{{u}} , \\ $$$$\mathrm{then}\:{x},\:{y},\:{z},\:{u}\:\mathrm{are}\:\mathrm{in} \\ $$

Question Number 18446    Answers: 0   Comments: 0

Question Number 18440    Answers: 0   Comments: 0

Question Number 18439    Answers: 0   Comments: 3

Question Number 18432    Answers: 1   Comments: 0

Find interval p so (p − 2)x^2 + 2px + p − 1 = 0 have negative roots

$$\mathrm{Find}\:\mathrm{interval}\:{p}\:\mathrm{so} \\ $$$$\left({p}\:−\:\mathrm{2}\right){x}^{\mathrm{2}} \:+\:\mathrm{2}{px}\:+\:{p}\:−\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{have}\:\mathrm{negative}\:\mathrm{roots} \\ $$

Question Number 18431    Answers: 1   Comments: 0

x^2 =16^x find x

$$\mathrm{x}^{\mathrm{2}} =\mathrm{16}^{\mathrm{x}} \\ $$$$\mathrm{find}\:\mathrm{x} \\ $$

Question Number 18430    Answers: 1   Comments: 0

x^2 =3^x find x

$$\mathrm{x}^{\mathrm{2}} =\mathrm{3}^{\mathrm{x}} \\ $$$$\mathrm{find}\:\mathrm{x} \\ $$

Question Number 18426    Answers: 0   Comments: 0

The equation 2 cot 2x − 3 cot 3x = tan 2x has (1) Two solutions in (0, (π/3)) (2) One solution in (0, (π/3)) (3) No solution in (−∞, ∞) (4) Three solution in (0, π)

$$\mathrm{The}\:\mathrm{equation}\:\mathrm{2}\:\mathrm{cot}\:\mathrm{2}{x}\:−\:\mathrm{3}\:\mathrm{cot}\:\mathrm{3}{x}\:=\:\mathrm{tan}\:\mathrm{2}{x} \\ $$$$\mathrm{has} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Two}\:\mathrm{solutions}\:\mathrm{in}\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{3}}\right) \\ $$$$\left(\mathrm{2}\right)\:\mathrm{One}\:\mathrm{solution}\:\mathrm{in}\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{3}}\right) \\ $$$$\left(\mathrm{3}\right)\:\mathrm{No}\:\mathrm{solution}\:\mathrm{in}\:\left(−\infty,\:\infty\right) \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Three}\:\mathrm{solution}\:\mathrm{in}\:\left(\mathrm{0},\:\pi\right) \\ $$

Question Number 18428    Answers: 0   Comments: 0

Question Number 18416    Answers: 0   Comments: 0

The number of integral values of x which satisfies (((x − 5)^(10) (x − 13)^(20) (x − 19)^(13) )/((x − 10)^(18) (x − 25)^(19) )) ≥ 0 and 2 ≤ x ≤ 30 are (1) 23 (2) 24 (3) 25 (4) 26

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{integral}\:\mathrm{values}\:\mathrm{of}\:{x} \\ $$$$\mathrm{which}\:\mathrm{satisfies} \\ $$$$\frac{\left({x}\:−\:\mathrm{5}\right)^{\mathrm{10}} \left({x}\:−\:\mathrm{13}\right)^{\mathrm{20}} \left({x}\:−\:\mathrm{19}\right)^{\mathrm{13}} }{\left({x}\:−\:\mathrm{10}\right)^{\mathrm{18}} \left({x}\:−\:\mathrm{25}\right)^{\mathrm{19}} }\:\geqslant\:\mathrm{0}\:\mathrm{and} \\ $$$$\mathrm{2}\:\leqslant\:{x}\:\leqslant\:\mathrm{30}\:\mathrm{are} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{23} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{24} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{25} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{26} \\ $$

Question Number 18415    Answers: 1   Comments: 1

Calculate the magnetic field produced at ground level by a 15A current flowing in a long horizontal wire suspended at a height of 7.5m

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{magnetic}\:\mathrm{field}\:\mathrm{produced}\:\mathrm{at}\:\mathrm{ground}\:\mathrm{level}\:\mathrm{by}\:\mathrm{a}\:\mathrm{15A}\:\mathrm{current} \\ $$$$\mathrm{flowing}\:\mathrm{in}\:\mathrm{a}\:\mathrm{long}\:\mathrm{horizontal}\:\mathrm{wire}\:\mathrm{suspended}\:\mathrm{at}\:\mathrm{a}\:\mathrm{height}\:\mathrm{of}\:\mathrm{7}.\mathrm{5m} \\ $$

Question Number 18411    Answers: 1   Comments: 0

A glass bulb contains 2.24 L of H_2 and 1.12 L of D_2 at S.T.P. It is connected to a fully evacuated bulb by a stopcock with a small opening. The stopcock is opened for sometime and then closed. The first bulb now contains 0.1 g of D_2 . Calculate the percentage composition by weight of the gases in the second bulb.

$$\mathrm{A}\:\mathrm{glass}\:\mathrm{bulb}\:\mathrm{contains}\:\mathrm{2}.\mathrm{24}\:\mathrm{L}\:\mathrm{of}\:\mathrm{H}_{\mathrm{2}} \:\mathrm{and} \\ $$$$\mathrm{1}.\mathrm{12}\:\mathrm{L}\:\mathrm{of}\:\mathrm{D}_{\mathrm{2}} \:\mathrm{at}\:\mathrm{S}.\mathrm{T}.\mathrm{P}.\:\mathrm{It}\:\mathrm{is}\:\mathrm{connected}\:\mathrm{to} \\ $$$$\mathrm{a}\:\mathrm{fully}\:\mathrm{evacuated}\:\mathrm{bulb}\:\mathrm{by}\:\mathrm{a}\:\mathrm{stopcock} \\ $$$$\mathrm{with}\:\mathrm{a}\:\mathrm{small}\:\mathrm{opening}.\:\mathrm{The}\:\mathrm{stopcock}\:\mathrm{is} \\ $$$$\mathrm{opened}\:\mathrm{for}\:\mathrm{sometime}\:\mathrm{and}\:\mathrm{then}\:\mathrm{closed}. \\ $$$$\mathrm{The}\:\mathrm{first}\:\mathrm{bulb}\:\mathrm{now}\:\mathrm{contains}\:\mathrm{0}.\mathrm{1}\:\mathrm{g}\:\mathrm{of}\:\mathrm{D}_{\mathrm{2}} . \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{percentage}\:\mathrm{composition} \\ $$$$\mathrm{by}\:\mathrm{weight}\:\mathrm{of}\:\mathrm{the}\:\mathrm{gases}\:\mathrm{in}\:\mathrm{the}\:\mathrm{second} \\ $$$$\mathrm{bulb}. \\ $$

  Pg 1876      Pg 1877      Pg 1878      Pg 1879      Pg 1880      Pg 1881      Pg 1882      Pg 1883      Pg 1884      Pg 1885   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com