Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1881
Question Number 20524 Answers: 1 Comments: 0
$$\int{x}^{{x}} {dx} \\ $$
Question Number 20511 Answers: 0 Comments: 0
$$\mathrm{Given}\:\mathrm{a}\:\mathrm{sphere}\:\mathrm{of}\:\mathrm{unit}\:\mathrm{radius}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{expression}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circular} \\ $$$$\mathrm{spot}\:\mathrm{on}\:\mathrm{the}\:\mathrm{sphere}'\mathrm{s}\:\mathrm{surface}\:\mathrm{given} \\ $$$$\mathrm{the}\:\mathrm{latitude}\:\beta\:\mathrm{and}\:\mathrm{the}\:\mathrm{longitude}\:\lambda \\ $$$$\mathrm{of}\:\mathrm{its}\:\mathrm{center}\:\mathrm{and}\:\mathrm{its}\:\mathrm{angular}\:\mathrm{radius}\:{r}. \\ $$
Question Number 20509 Answers: 0 Comments: 0
$${Simplify}: \\ $$$$\mathrm{cos}^{−\mathrm{1}} \:\left(\frac{\mathrm{sin}\:{x}\:+\:\mathrm{cos}\:{x}}{\sqrt{\mathrm{2}}}\right),\:\frac{\mathrm{5}\pi}{\mathrm{4}}\:<\:{x}\:<\:\frac{\mathrm{9}\pi}{\mathrm{4}} \\ $$
Question Number 20506 Answers: 1 Comments: 0
$${Simplify}: \\ $$$$\mathrm{cos}^{−\mathrm{1}} \:\left(\frac{\mathrm{sin}\:{x}\:+\:\mathrm{cos}\:{x}}{\sqrt{\mathrm{2}}}\right),\:\frac{\pi}{\mathrm{4}}\:<\:{x}\:<\:\frac{\mathrm{5}\pi}{\mathrm{4}} \\ $$
Question Number 20505 Answers: 1 Comments: 0
$${Simplify}: \\ $$$$\mathrm{cos}^{−\mathrm{1}} \:\left(\frac{\mathrm{3}}{\mathrm{5}}\:\mathrm{cos}\:{x}\:+\:\frac{\mathrm{4}}{\mathrm{5}}\:\mathrm{sin}\:{x}\right),\:{where} \\ $$$$−\frac{\mathrm{3}\pi}{\mathrm{4}}\:\leqslant\:{x}\:\leqslant\:\frac{\pi}{\mathrm{4}} \\ $$
Question Number 20501 Answers: 0 Comments: 5
$$\mathrm{The}\:\mathrm{force}\:\mathrm{acting}\:\mathrm{on}\:\mathrm{the}\:\mathrm{block}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by} \\ $$$${F}\:=\:\mathrm{5}\:−\:\mathrm{2}{t}.\:\mathrm{The}\:\mathrm{frictional}\:\mathrm{force}\:\mathrm{acting} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{block}\:\mathrm{at}\:{t}\:=\:\mathrm{2}\:\mathrm{s}.\:\left(\mathrm{The}\:\mathrm{block}\:\mathrm{is}\:\mathrm{at}\right. \\ $$$$\left.\mathrm{rest}\:\mathrm{at}\:{t}\:=\:\mathrm{0}\right) \\ $$
Question Number 20471 Answers: 1 Comments: 2
$${Find}\:{the}\:{surface}\:{area}\:{of}\:{a}\:{solid} \\ $$$${that}\:{is}\:{common}\:{part}\:{of}\:{two} \\ $$$${cylinders}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} ,\:{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={a}^{\mathrm{2}} . \\ $$$$\boldsymbol{{Compute}}\:\boldsymbol{{the}}\:\boldsymbol{{volume}}\:\boldsymbol{{also}}. \\ $$
Question Number 20468 Answers: 1 Comments: 0
$$\int\frac{{dx}}{\mathrm{sin}\:^{\mathrm{4}} {x}−\mathrm{cos}\:^{\mathrm{4}} {x}} \\ $$
Question Number 20467 Answers: 1 Comments: 0
$$\int\left({a}\mathrm{sin}\:^{\mathrm{2}} {x}+{b}\mathrm{cos}\:^{\mathrm{2}} {x}\right){dx} \\ $$
Question Number 20466 Answers: 1 Comments: 0
$$\int\frac{\mathrm{sin}\:{x}\mathrm{cos}\:{xdx}}{\mathrm{sin}^{\mathrm{4}} {x}+\mathrm{cos}\:^{\mathrm{4}} {x}} \\ $$
Question Number 20465 Answers: 1 Comments: 0
$$\int\frac{\mathrm{cos}\:\mathrm{2}{xdx}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}+\mathrm{8}} \\ $$
Question Number 20461 Answers: 0 Comments: 4
Question Number 20460 Answers: 0 Comments: 1
Question Number 20456 Answers: 0 Comments: 1
$$\int\mathrm{cot}\:^{\mathrm{4}} {xdx} \\ $$
Question Number 20455 Answers: 0 Comments: 1
$$\int{sec}^{\mathrm{6}} {xdx} \\ $$
Question Number 20454 Answers: 0 Comments: 1
$$\int\mathrm{sec}\:^{\mathrm{3}} {xdx} \\ $$
Question Number 20453 Answers: 0 Comments: 0
$$\int\frac{{dx}}{\mathrm{3}+\mathrm{4sin}\:{x}} \\ $$
Question Number 20452 Answers: 0 Comments: 0
$$\int\frac{{dx}}{\mathrm{3}+\mathrm{2sin}\:{x}+\mathrm{cos}\:{x}} \\ $$
Question Number 20451 Answers: 1 Comments: 0
$$\int{sin}^{\mathrm{3}} {x}\mathrm{cos}\:^{\mathrm{4}} {xdx} \\ $$
Question Number 20450 Answers: 1 Comments: 0
$$\int\mathrm{sin}\:^{\mathrm{4}} {x}\mathrm{cos}\:^{\mathrm{3}} {xdx} \\ $$
Question Number 20551 Answers: 1 Comments: 8
$${Find}\:{the}\:{minimum}\:{value}\:{of} \\ $$$$\mid{a}\:+\:{b}\omega\:+\:{c}\omega^{\mathrm{2}} \mid,\:{where}\:{a},\:{b}\:{and}\:{c}\:{are}\:{all} \\ $$$${not}\:{equal}\:{integers}\:{and}\:\omega\left(\neq\mathrm{1}\right)\:{is}\:{a}\:{cube} \\ $$$${root}\:{of}\:{unity}. \\ $$
Question Number 20488 Answers: 1 Comments: 1
Question Number 20436 Answers: 0 Comments: 0
$$\mathrm{If}\:\:{A}\:\mathrm{lies}\:\mathrm{in}\:\mathrm{the}\:\mathrm{third}\:\mathrm{quadrant}\:\mathrm{and} \\ $$$$\mathrm{3}\:\mathrm{tan}\:{A}\:−\:\mathrm{4}\:=\:\mathrm{0},\:\mathrm{then}\: \\ $$$$\mathrm{5}\:\mathrm{sin}\:\mathrm{2}{A}\:+\:\mathrm{3}\:\mathrm{sin}\:{A}\:+\:\mathrm{4cos}\:{A}\:=\: \\ $$
Question Number 20435 Answers: 1 Comments: 0
Question Number 20434 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\mathrm{cos}\:{x}=\mathrm{tan}\:{y},\:\mathrm{cos}\:{y}=\mathrm{tan}\:{z},\:\mathrm{cos}\:{z}=\mathrm{tan}\:{x}, \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{sin}\:{x}\:\:\mathrm{is} \\ $$
Question Number 20430 Answers: 2 Comments: 1
$$\mathrm{Let}\:{a},\:{b}\:\mathrm{and}\:{c}\:\mathrm{be}\:\mathrm{such}\:\mathrm{that}\:{a}\:+\:{b}\:+\:{c}\:=\:\mathrm{0} \\ $$$$\mathrm{and} \\ $$$${P}\:=\:\frac{{a}^{\mathrm{2}} }{\mathrm{2}{a}^{\mathrm{2}} \:+\:{bc}}\:+\:\frac{{b}^{\mathrm{2}} }{\mathrm{2}{b}^{\mathrm{2}} \:+\:{ca}}\:+\:\frac{{c}^{\mathrm{2}} }{\mathrm{2}{c}^{\mathrm{2}} \:+\:{ab}} \\ $$$$\mathrm{is}\:\mathrm{defined}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{P}? \\ $$
Pg 1876 Pg 1877 Pg 1878 Pg 1879 Pg 1880 Pg 1881 Pg 1882 Pg 1883 Pg 1884 Pg 1885
Terms of Service
Privacy Policy
Contact: info@tinkutara.com