Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 188
Question Number 200729 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:{if}\:\:\:\:{a}<{b}<\mathrm{0}\:\:\: \\ $$$$\:\:\:{and}\:\:\sqrt{\:{a}^{\mathrm{4}} +\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{4}} }\:+\sqrt{{a}^{\mathrm{4}} −\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{4}} }\:=\:? \\ $$$$ \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\: \\ $$
Question Number 200723 Answers: 0 Comments: 0
Question Number 200722 Answers: 1 Comments: 1
$$\:\:\mathrm{Find}\:\mathrm{all}\:\mathrm{polynomials}\:\mathrm{P}\left(\mathrm{x}\right)\:\mathrm{with} \\ $$$$\:\mathrm{real}\:\mathrm{coefficients}\:\mathrm{such}\:\mathrm{that}\:\mathrm{for} \\ $$$$\:\mathrm{all}\:\mathrm{nonzero}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{x},\: \\ $$$$\:\:\:\:\:\mathrm{P}\left(\mathrm{x}\right)+\mathrm{P}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)=\frac{\mathrm{P}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\right)+\mathrm{P}\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}\right)}{\mathrm{2}}\:\:\: \\ $$
Question Number 200720 Answers: 2 Comments: 0
Question Number 200718 Answers: 3 Comments: 0
$$\mathrm{3}. \\ $$$$\mathrm{1}+\mathrm{3}+\mathrm{5}+\mathrm{7}+...+\left(\mathrm{2}{n}+\mathrm{1}\right)\:=\:? \\ $$
Question Number 200717 Answers: 1 Comments: 0
$$\mathrm{2}. \\ $$$${A}\:=\:\mathrm{12}\:−\:\mathrm{2}{x} \\ $$$${B}\:=\:\mathrm{3}\:+\:\mathrm{2}{x} \\ $$$$\left({A}\centerdot{B}\right)_{\boldsymbol{{min}}} \:=\:? \\ $$
Question Number 200716 Answers: 1 Comments: 0
$$\mathrm{1}.\: \\ $$$$\frac{{a}}{\mathrm{8}}\:+\:\frac{{b}}{\mathrm{5}}\:=\:\mathrm{6}\:\:\:\Rightarrow\:\:\:\left({a}+{b}\right)_{\boldsymbol{{max}}} \:=\:? \\ $$
Question Number 200736 Answers: 0 Comments: 0
$$\boldsymbol{{Solve}}:\:\boldsymbol{{A}}\:\boldsymbol{{particle}}\:\boldsymbol{{moves}}\:\boldsymbol{{along}}\:\boldsymbol{{the}}\:\boldsymbol{{space}} \\ $$$$\boldsymbol{{curve}}\:\underset{−} {\boldsymbol{{r}}}=\left(\boldsymbol{{t}}^{\mathrm{2}} +\boldsymbol{{t}}\right)\boldsymbol{{i}}+\left(\mathrm{3}\boldsymbol{{t}}−\mathrm{2}\right)\boldsymbol{{j}}+\left(\mathrm{2}\boldsymbol{{t}}^{\mathrm{3}} −\mathrm{4}\boldsymbol{{t}}^{\mathrm{2}} \right)\boldsymbol{{k}}. \\ $$$$\boldsymbol{{find}} \\ $$$$\left(\boldsymbol{{a}}\right)\boldsymbol{{velocity}} \\ $$$$\left(\boldsymbol{{b}}\right)\boldsymbol{{speed}}\:\boldsymbol{{or}}\:\boldsymbol{{magnitude}}\:\boldsymbol{{of}}\:\boldsymbol{{velocity}} \\ $$$$\left(\boldsymbol{{c}}\right)\boldsymbol{{acceleration}} \\ $$$$\left(\boldsymbol{{d}}\right)\boldsymbol{{magnitude}}\:\boldsymbol{{of}}\:\boldsymbol{{acceleration}}\:\boldsymbol{{at}}\:\boldsymbol{{time}}\:\boldsymbol{{t}}=\mathrm{2} \\ $$
Question Number 200697 Answers: 1 Comments: 0
Question Number 200696 Answers: 4 Comments: 0
Question Number 200691 Answers: 1 Comments: 1
Question Number 200685 Answers: 1 Comments: 0
$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\:\left(\mathrm{1}+\mathrm{tan}{x}\right){dx}\: \\ $$$$ \\ $$
Question Number 200684 Answers: 1 Comments: 0
$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\int_{−\mathrm{4}\pi} ^{\mathrm{4}\pi} \:\:\:\frac{\mid{x}\mid\:\mathrm{sin}\:^{\mathrm{2}{n}} {x}}{\mathrm{sin}\:^{\mathrm{2}{n}} {x}+\mathrm{cos}\:^{\mathrm{2}{n}} {x}}{dx} \\ $$$$ \\ $$$$ \\ $$
Question Number 200677 Answers: 0 Comments: 1
$$\int\frac{\mathrm{df}}{\mathrm{dx}}×\frac{\mathrm{dg}}{\mathrm{dx}}\:\:\:\:\:? \\ $$
Question Number 200657 Answers: 1 Comments: 0
Question Number 203716 Answers: 3 Comments: 0
Question Number 200646 Answers: 2 Comments: 0
Question Number 200636 Answers: 1 Comments: 5
$$\mathrm{1}−\mathrm{Determiner}\:\mathrm{la}\:\mathrm{valeur}\:\mathrm{de}\:\:\boldsymbol{\mathrm{EF}} \\ $$$$\mathrm{2}−\mathrm{Laire}\:\mathrm{du}\:\mathrm{triangle}\:\:\boldsymbol{\mathrm{ADE}} \\ $$$$ \\ $$
Question Number 200632 Answers: 0 Comments: 1
$$\boldsymbol{\mathrm{help}}\:\boldsymbol{\mathrm{me}}\:\boldsymbol{\mathrm{derived}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{formular}}\:\boldsymbol{\mathrm{of}} \\ $$$$\:\boldsymbol{\mathrm{motion}} \\ $$
Question Number 200627 Answers: 1 Comments: 0
Question Number 200622 Answers: 2 Comments: 0
Question Number 200619 Answers: 1 Comments: 0
Question Number 200618 Answers: 1 Comments: 1
Question Number 200617 Answers: 1 Comments: 0
Question Number 200606 Answers: 1 Comments: 0
Question Number 200605 Answers: 0 Comments: 4
Pg 183 Pg 184 Pg 185 Pg 186 Pg 187 Pg 188 Pg 189 Pg 190 Pg 191 Pg 192
Terms of Service
Privacy Policy
Contact: info@tinkutara.com