Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 188

Question Number 203357    Answers: 1   Comments: 0

For the series 5−(5/2)+(5/4)−(5/8)+∙∙∙+(((−1)^(n−1) 5)/2^(n−1) ) find an expression for the sum of the first n terms. Also if the series converges, find the sum to ∞.

$$\boldsymbol{{For}}\:\boldsymbol{{the}}\:\boldsymbol{{series}}\:\mathrm{5}−\frac{\mathrm{5}}{\mathrm{2}}+\frac{\mathrm{5}}{\mathrm{4}}−\frac{\mathrm{5}}{\mathrm{8}}+\centerdot\centerdot\centerdot+\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}−\mathrm{1}} \mathrm{5}}{\mathrm{2}^{\boldsymbol{{n}}−\mathrm{1}} } \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{an}}\:\boldsymbol{{expression}}\:\boldsymbol{{for}}\:\boldsymbol{{the}}\:\boldsymbol{{sum}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{first}} \\ $$$$\boldsymbol{{n}}\:\boldsymbol{{terms}}.\:\boldsymbol{{Also}}\:\boldsymbol{{if}}\:\boldsymbol{{the}}\:\boldsymbol{{series}}\:\boldsymbol{{converges}}, \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{sum}}\:\boldsymbol{{to}}\:\infty. \\ $$$$ \\ $$$$ \\ $$

Question Number 203354    Answers: 1   Comments: 0

.

$$. \\ $$

Question Number 203353    Answers: 0   Comments: 0

Question Number 203352    Answers: 1   Comments: 0

Question Number 203351    Answers: 1   Comments: 0

Question Number 203349    Answers: 1   Comments: 0

calculate ∫∫_([0,a]^2 ) e^(−x^2 −y^2 ) dxdy can you find ∫_0 ^a e^(−x^2 ) dx ? a>0

$${calculate}\:\int\int_{\left[\mathrm{0},{a}\right]^{\mathrm{2}} } \:{e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } {dxdy} \\ $$$${can}\:{you}\:{find}\:\int_{\mathrm{0}} ^{{a}} {e}^{−{x}^{\mathrm{2}} } {dx}\:\:\:\:? \\ $$$${a}>\mathrm{0} \\ $$

Question Number 203336    Answers: 0   Comments: 0

Question Number 203330    Answers: 2   Comments: 0

Question Number 203329    Answers: 1   Comments: 0

find the ranges of value of x for which series convergent or divergent 𝚺_(n=1) ^∞ (((n+1))/n^3 )x^n

$$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{ranges}}\:\boldsymbol{{of}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{x}}\:\boldsymbol{{for}}\:\boldsymbol{{which}}\: \\ $$$$\boldsymbol{{series}}\:\boldsymbol{{convergent}}\:\boldsymbol{{or}}\:\boldsymbol{{divergent}} \\ $$$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\boldsymbol{\sum}}}\frac{\left(\boldsymbol{{n}}+\mathrm{1}\right)}{\boldsymbol{{n}}^{\mathrm{3}} }\boldsymbol{{x}}^{\boldsymbol{{n}}} \\ $$

Question Number 203327    Answers: 2   Comments: 0

Question Number 203325    Answers: 1   Comments: 0

sin^2 x+cos^2 (2x)+sin^2 (3x)=(3/2)

$$\mathrm{sin}^{\mathrm{2}} {x}+\mathrm{cos}^{\mathrm{2}} \left(\mathrm{2}{x}\right)+\mathrm{sin}^{\mathrm{2}} \left(\mathrm{3}{x}\right)=\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Question Number 203321    Answers: 1   Comments: 0

Help-me! Observe points A, B and C below and find the widthof a lake according to the following data: (AB)m; C^ = 39°52′12′′ (BC − 257.5)m; A^ = 97°7′56′′ (CA − 30)m; B^ = 42°59′52′′ CA is the width of the lake •^C •_A •_B

$$\mathrm{Help}-\mathrm{me}! \\ $$$$\: \\ $$$$\mathrm{Observe}\:\mathrm{points}\:\mathrm{A},\:\mathrm{B}\:\mathrm{and}\:\mathrm{C}\:\mathrm{below}\:\mathrm{and}\:\mathrm{find}\:\mathrm{the}\:\mathrm{widthof}\:\mathrm{a}\:\mathrm{lake}\:\mathrm{according}\:\mathrm{to}\:\mathrm{the}\:\mathrm{following}\:\mathrm{data}: \\ $$$$\: \\ $$$$\left(\mathrm{AB}\right)\mathrm{m};\:\hat {\mathrm{C}}\:=\:\mathrm{39}°\mathrm{52}'\mathrm{12}'' \\ $$$$\left(\mathrm{BC}\:−\:\mathrm{257}.\mathrm{5}\right)\mathrm{m};\:\hat {\mathrm{A}}\:=\:\mathrm{97}°\mathrm{7}'\mathrm{56}'' \\ $$$$\left(\mathrm{CA}\:−\:\mathrm{30}\right)\mathrm{m};\:\hat {\mathrm{B}}\:=\:\mathrm{42}°\mathrm{59}'\mathrm{52}'' \\ $$$$\mathrm{CA}\:\mathrm{is}\:\mathrm{the}\:\mathrm{width}\:\mathrm{of}\:\mathrm{the}\:\mathrm{lake}\: \\ $$$$\: \\ $$$$\bullet^{\mathrm{C}} \\ $$$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\bullet_{\mathrm{A}} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\bullet_{\mathrm{B}} \\ $$

Question Number 203319    Answers: 0   Comments: 6

Question Number 203313    Answers: 1   Comments: 0

a_(n+1) =a_n ^2 +2a_n −2, a_1 =3. Prove thatΣ (1/(a_n +2)) ≤ (3/(10)).

$${a}_{{n}+\mathrm{1}} ={a}_{{n}} ^{\mathrm{2}} +\mathrm{2}{a}_{{n}} −\mathrm{2},\:{a}_{\mathrm{1}} =\mathrm{3}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\Sigma\:\frac{\mathrm{1}}{{a}_{{n}} +\mathrm{2}}\:\leqslant\:\frac{\mathrm{3}}{\mathrm{10}}. \\ $$

Question Number 203309    Answers: 3   Comments: 0

If z_1 = 3 + 3(√3) i and z_2 = -1 − (√3) i Find: (z_1 ^( 3) /z_2 ^( 6) ) = ?

$$\mathrm{If}\:\:\:\mathrm{z}_{\mathrm{1}} =\:\mathrm{3}\:+\:\mathrm{3}\sqrt{\mathrm{3}}\:\boldsymbol{\mathrm{i}}\:\:\:\mathrm{and}\:\:\:\mathrm{z}_{\mathrm{2}} =\:-\mathrm{1}\:−\:\sqrt{\mathrm{3}}\:\boldsymbol{\mathrm{i}} \\ $$$$\mathrm{Find}:\:\:\:\frac{\mathrm{z}_{\mathrm{1}} ^{\:\mathrm{3}} }{\mathrm{z}_{\mathrm{2}} ^{\:\mathrm{6}} }\:=\:? \\ $$

Question Number 203308    Answers: 1   Comments: 0

my iq is not good enough to be a mathematician. i dont know what to do with my life now. what is there for me.

$$\:\:\mathrm{my}\:\mathrm{iq}\:\mathrm{is}\:\mathrm{not}\:\mathrm{good}\:\mathrm{enough}\:\mathrm{to}\:\mathrm{be}\:\mathrm{a}\:\mathrm{mathematician}.\:\: \\ $$$$\:\:\mathrm{i}\:\mathrm{dont}\:\mathrm{know}\:\mathrm{what}\:\mathrm{to}\:\mathrm{do}\:\mathrm{with}\:\mathrm{my}\:\mathrm{life}\:\mathrm{now}.\:\: \\ $$$$\:\:\mathrm{what}\:\mathrm{is}\:\mathrm{there}\:\mathrm{for}\:\mathrm{me}.\:\: \\ $$

Question Number 203305    Answers: 1   Comments: 0

Question Number 203304    Answers: 0   Comments: 0

Question Number 203301    Answers: 1   Comments: 0

is ∫(√x)e^(−x) dx =Σ_(n=1) ^∞ ((Π_(k=1) ^n (2/(2k+1)))x^n (√x)e^(−x) )+C?

$$\mathrm{is} \\ $$$$\int\sqrt{{x}}{e}^{−{x}} {dx} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\frac{\mathrm{2}}{\mathrm{2}{k}+\mathrm{1}}\right){x}^{{n}} \sqrt{{x}}{e}^{−{x}} \right)+{C}? \\ $$

Question Number 203291    Answers: 1   Comments: 0

f(x)={1+((√x^2 )/x) if x#0 2 if x=0 study the continuty of f in 0

$${f}\left({x}\right)=\left\{\mathrm{1}+\frac{\sqrt{{x}^{\mathrm{2}} }}{{x}}\:\:\:{if}\:{x}#\mathrm{0}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\:\:{if}\:\:{x}=\mathrm{0} \\ $$$${study}\:{the}\:{continuty}\:{of}\:{f}\:{in}\:\mathrm{0} \\ $$

Question Number 203288    Answers: 3   Comments: 0

Find: lim_(x→0) ((1 − cos4x)/x^2 ) = ?

$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}\:−\:\mathrm{cos4x}}{\mathrm{x}^{\mathrm{2}} }\:=\:? \\ $$

Question Number 203282    Answers: 2   Comments: 2

Question Number 203277    Answers: 0   Comments: 0

Question Number 203275    Answers: 0   Comments: 2

Show this has exactly 7 solutions for x∈C: x^(ln x) =1

$$\mathrm{Show}\:\mathrm{this}\:\mathrm{has}\:\mathrm{exactly}\:\mathrm{7}\:\mathrm{solutions}\:\mathrm{for}\:{x}\in\mathbb{C}: \\ $$$${x}^{\mathrm{ln}\:{x}} =\mathrm{1} \\ $$

Question Number 203270    Answers: 1   Comments: 0

find the last 4 digits of 2024^(2023)

$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{last}}\:\mathrm{4}\:\boldsymbol{\mathrm{digits}}\:\boldsymbol{\mathrm{of}}\:\mathrm{2024}^{\mathrm{2023}} \\ $$

Question Number 203264    Answers: 2   Comments: 0

If x = ((1 + (√5))/2) find: x^(12) = ?

$$\mathrm{If}\:\:\:\:\:\mathrm{x}\:=\:\frac{\mathrm{1}\:+\:\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:\:\:\:\mathrm{find}:\:\mathrm{x}^{\mathrm{12}} \:=\:? \\ $$

  Pg 183      Pg 184      Pg 185      Pg 186      Pg 187      Pg 188      Pg 189      Pg 190      Pg 191      Pg 192   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com