Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 188

Question Number 201790    Answers: 1   Comments: 1

Question Number 201764    Answers: 1   Comments: 0

1. y = tgx − ctgx → y^′ = ? 2. y = (1 + x^2 ) arctgx → y^′ = ? 3. y = cos^4 x → y^′ = ? 4. { ((x = 2t)),((y = 3t^2 − 5t)) :} → x^′ , y^′ = ?

$$\mathrm{1}.\:\mathrm{y}\:=\:\mathrm{tgx}\:−\:\mathrm{ctgx}\:\:\rightarrow\:\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{2}.\:\mathrm{y}\:=\:\left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} \right)\:\mathrm{arctgx}\:\rightarrow\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{3}.\:\mathrm{y}\:=\:\mathrm{cos}^{\mathrm{4}} \:\mathrm{x}\:\rightarrow\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{4}.\:\begin{cases}{\mathrm{x}\:=\:\mathrm{2t}}\\{\mathrm{y}\:=\:\mathrm{3t}^{\mathrm{2}} \:−\:\mathrm{5t}}\end{cases}\:\:\:\rightarrow\:\:\:\mathrm{x}^{'} \:,\:\mathrm{y}^{'} \:=\:? \\ $$

Question Number 201763    Answers: 5   Comments: 0

Find: 1. ∫ cos3x cosx dx = ? 2. ∫ 3^x sinx dx = ? 3. ∫_(0 ) ^( 1) x e^(−x) dx = ? 4. ∫_1 ^( e) ln^2 x dx = ?

$$\mathrm{Find}: \\ $$$$\mathrm{1}.\:\int\:\mathrm{cos3x}\:\mathrm{cosx}\:\mathrm{dx}\:=\:? \\ $$$$\mathrm{2}.\:\int\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} \:\mathrm{sinx}\:\mathrm{dx}\:=\:? \\ $$$$\mathrm{3}.\:\int_{\mathrm{0}\:} ^{\:\mathrm{1}} \:\mathrm{x}\:\mathrm{e}^{−\boldsymbol{\mathrm{x}}} \:\mathrm{dx}\:=\:? \\ $$$$\mathrm{4}.\:\int_{\mathrm{1}} ^{\:\boldsymbol{\mathrm{e}}} \:\mathrm{ln}^{\mathrm{2}} \:\mathrm{x}\:\mathrm{dx}\:=\:? \\ $$

Question Number 201762    Answers: 1   Comments: 0

Question Number 201956    Answers: 1   Comments: 1

Question Number 201727    Answers: 1   Comments: 0

∫_(π/6) ^(π/3) e^(sin x^(cos x^(tan x^(cot x^(sec x^(cosec x) ) ) ) ) ) dx

$$\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} {e}^{\mathrm{sin}\:{x}^{{c}\mathrm{os}\:{x}^{\mathrm{tan}\:{x}^{\mathrm{cot}\:{x}^{\mathrm{sec}\:{x}^{\mathrm{cosec}\:{x}} } } } } } {dx} \\ $$

Question Number 201729    Answers: 1   Comments: 10

The teacher can choose in 560 ways, provided that there are three students in each team. Knowing that five students do not want to participate, find the number of people willing to participate

The teacher can choose in 560 ways, provided that there are three students in each team. Knowing that five students do not want to participate, find the number of people willing to participate

Question Number 201724    Answers: 0   Comments: 0

lim_(x→0) ((e^x (x−2)+x+2)/x^3 ) solve it by not using taylor series or l′hopital rule.

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{x}} \left({x}−\mathrm{2}\right)+{x}+\mathrm{2}}{{x}^{\mathrm{3}} }\:{solve}\:{it}\:{by}\:{not}\:{using} \\ $$$${taylor}\:{series}\:{or}\:{l}'{hopital}\:{rule}. \\ $$

Question Number 201722    Answers: 5   Comments: 1

Question Number 201715    Answers: 0   Comments: 0

Use Cauchy Riemann to verify whether f(z)=(1/(z(z+1))) is analytic.

$${Use}\:{Cauchy}\:{Riemann}\:{to}\:{verify}\:{whether}\: \\ $$$${f}\left({z}\right)=\frac{\mathrm{1}}{{z}\left({z}+\mathrm{1}\right)}\:{is}\:{analytic}. \\ $$

Question Number 201728    Answers: 1   Comments: 0

cos^2 4x ∙ sin^2 4x = 0,25 for equation [0;90] how many roots are there in the piece?

$$\mathrm{cos}^{\mathrm{2}} \:\mathrm{4x}\:\centerdot\:\mathrm{sin}^{\mathrm{2}} \:\mathrm{4x}\:=\:\mathrm{0},\mathrm{25}\:\mathrm{for}\:\mathrm{equation} \\ $$$$\left[\mathrm{0};\mathrm{90}\right]\:\mathrm{how}\:\mathrm{many}\:\mathrm{roots}\:\mathrm{are}\:\mathrm{there}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{piece}? \\ $$

Question Number 201712    Answers: 0   Comments: 2

Question Number 201707    Answers: 1   Comments: 0

Question Number 201702    Answers: 1   Comments: 1

Find: ∫_1 ^( 3) dx ∫_x ^( x^3 ) (x − y) dy

$$\mathrm{Find}: \\ $$$$\int_{\mathrm{1}} ^{\:\mathrm{3}} \:\mathrm{dx}\:\int_{\boldsymbol{\mathrm{x}}} ^{\:\boldsymbol{\mathrm{x}}^{\mathrm{3}} } \:\left(\mathrm{x}\:−\:\mathrm{y}\right)\:\mathrm{dy} \\ $$

Question Number 201693    Answers: 3   Comments: 0

Question Number 201689    Answers: 1   Comments: 0

Question Number 201683    Answers: 0   Comments: 1

Starting from substituting z=x+iy. Identify the maximal region within which f(z) is analytic f(z)=(1/(z(z+1))). Note. Do not start by just differentiating f(z). Start by doing a substitution of x and iy and then verify Cauchy Rieman theorem.

$${Starting}\:{from}\:{substituting}\:{z}={x}+{iy}.\:{Identify} \\ $$$${the}\:{maximal}\:{region}\:{within}\:{which}\:{f}\left({z}\right)\:{is}\:{analytic} \\ $$$${f}\left({z}\right)=\frac{\mathrm{1}}{{z}\left({z}+\mathrm{1}\right)}.\: \\ $$$$ \\ $$$${Note}.\:{Do}\:{not}\:{start}\:{by}\:{just}\:{differentiating}\:{f}\left({z}\right).\: \\ $$$${Start}\:{by}\:\:{doing}\:{a}\:{substitution}\:{of}\:{x}\:{and}\:{iy}\:{and}\: \\ $$$${then}\:{verify}\:{Cauchy}\:{Rieman}\:{theorem}. \\ $$$$ \\ $$

Question Number 201681    Answers: 1   Comments: 0

f(x+1)−f(x)=3f(x)×f(x+1) D_f =N 2023×f(1402)=1 have equation f(x)=1 solution?

$${f}\left({x}+\mathrm{1}\right)−{f}\left({x}\right)=\mathrm{3}{f}\left({x}\right)×{f}\left({x}+\mathrm{1}\right) \\ $$$${D}_{{f}} ={N} \\ $$$$\mathrm{2023}×{f}\left(\mathrm{1402}\right)=\mathrm{1} \\ $$$${have}\:{equation}\:{f}\left({x}\right)=\mathrm{1}\:{solution}? \\ $$

Question Number 201680    Answers: 1   Comments: 0

$$\:\:\:\Subset \\ $$

Question Number 201679    Answers: 5   Comments: 0

Question Number 201660    Answers: 1   Comments: 0

An equilateral triangle inscribed in a parabola y^2 =4x. One of its vertices is at the vertex of the parabola. Find the length of each side of the triangle in units.

$${An}\:{equilateral}\:{triangle}\:{inscribed}\:{in}\:{a}\:{parabola} \\ $$$${y}^{\mathrm{2}} =\mathrm{4}{x}.\:{One}\:{of}\:{its}\:{vertices}\:{is}\:{at}\:{the}\:{vertex}\:{of}\:\:{the}\:{parabola}. \\ $$$${Find}\:{the}\:{length}\:{of}\:{each}\:{side}\:{of}\:{the}\:{triangle}\:{in}\:{units}. \\ $$

Question Number 201659    Answers: 2   Comments: 0

Find the shortest distance between point A(3,2) and curve y=(√x) (x>0).

$${Find}\:{the}\:{shortest}\:{distance}\:{between}\: \\ $$$${point}\:{A}\left(\mathrm{3},\mathrm{2}\right)\:{and}\:{curve}\:{y}=\sqrt{{x}}\:\left({x}>\mathrm{0}\right). \\ $$

Question Number 201654    Answers: 6   Comments: 0

Question Number 201653    Answers: 0   Comments: 0

Question Number 201646    Answers: 1   Comments: 0

Question Number 201644    Answers: 0   Comments: 0

  Pg 183      Pg 184      Pg 185      Pg 186      Pg 187      Pg 188      Pg 189      Pg 190      Pg 191      Pg 192   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com