Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1879

Question Number 20242    Answers: 1   Comments: 0

∫((5x^2 +11x+26)/(x^2 +2x+5))dx integration by partial fraction

$$\int\frac{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{11}{x}+\mathrm{26}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}{dx} \\ $$$${integration}\:{by}\:{partial}\:{fraction} \\ $$

Question Number 20241    Answers: 1   Comments: 0

partial fraction ∫((2x^2 +5x−9)/(√(x^2 −x+1)))dx

$${partial}\:{fraction} \\ $$$$\int\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{5}{x}−\mathrm{9}}{\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}{dx} \\ $$

Question Number 20279    Answers: 0   Comments: 0

Determine a relation between the coefficients a, b, c, d such that the equation: ax^3 +bx^2 +cx+d=0 has three real roots (with a pair of double roots).

$${Determine}\:{a}\:{relation}\:{between}\:\:{the} \\ $$$${coefficients}\:\:\boldsymbol{{a}},\:\boldsymbol{{b}},\:\boldsymbol{{c}},\:\boldsymbol{{d}}\:{such}\:{that}\:{the} \\ $$$${equation}:\:\:{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0} \\ $$$${has}\:{three}\:{real}\:{roots}\:\left({with}\:{a}\:{pair}\right. \\ $$$$\left.{of}\:{double}\:{roots}\right). \\ $$

Question Number 20239    Answers: 1   Comments: 0

∫(((2x+3)dx)/(√(x^2 +4x−7)))

$$\int\frac{\left(\mathrm{2}{x}+\mathrm{3}\right){dx}}{\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{7}}} \\ $$

Question Number 20238    Answers: 1   Comments: 1

∫(dx/(x^2 −x+1))

$$\int\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$

Question Number 20237    Answers: 0   Comments: 1

∫(e^(tan^(−1) x) /(1+x^2 ))dx

$$\int\frac{{e}^{\mathrm{tan}^{−\mathrm{1}} {x}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 20235    Answers: 0   Comments: 1

if t_((m+1)) =2t_((n+1)) so proof t_((3m+1)) =2t_((m+n+1) ) help please.........

$$ \\ $$$${if}\:\:\:\:\:\:\:\:{t}_{\left({m}+\mathrm{1}\right)} =\mathrm{2}{t}_{\left({n}+\mathrm{1}\right)} \\ $$$${so}\:{proof} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{t}_{\left(\mathrm{3}{m}+\mathrm{1}\right)} =\mathrm{2}{t}_{\left({m}+{n}+\mathrm{1}\right)\:\:\:\:\:\:} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{help}\:{please}......... \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 20230    Answers: 1   Comments: 5

Question Number 20217    Answers: 0   Comments: 1

Question Number 20205    Answers: 1   Comments: 0

find the sin^(−1) diferentiation

$${find}\:{the}\:{sin}^{−\mathrm{1}} \:{diferentiation} \\ $$

Question Number 20204    Answers: 0   Comments: 0

Question Number 20203    Answers: 0   Comments: 1

Question Number 20201    Answers: 2   Comments: 0

^4 (√(49 − 20(√6))) =

$$\:^{\mathrm{4}} \sqrt{\mathrm{49}\:−\:\mathrm{20}\sqrt{\mathrm{6}}}\:= \\ $$

Question Number 20200    Answers: 1   Comments: 0

Question Number 20198    Answers: 1   Comments: 0

Find exact form of cos (tan^(−1) ((1/2)))

$$\mathrm{Find}\:\mathrm{exact}\:\mathrm{form}\:\mathrm{of} \\ $$$$\mathrm{cos}\:\left(\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$

Question Number 20195    Answers: 1   Comments: 0

Question Number 20194    Answers: 0   Comments: 5

A plane is drawn through the midpoint of a diagonal of a cube perpendicular to the diagonal. Determine the area of the figure resulting from the section of the cube cut by this plane if the edge of the cube is equal to a.

$${A}\:{plane}\:{is}\:{drawn}\:{through}\:{the}\: \\ $$$${midpoint}\:{of}\:{a}\:{diagonal}\:{of}\:{a}\:{cube} \\ $$$${perpendicular}\:{to}\:{the}\:{diagonal}. \\ $$$${Determine}\:{the}\:{area}\:{of}\:{the}\:{figure} \\ $$$${resulting}\:{from}\:{the}\:{section}\:{of}\:{the} \\ $$$${cube}\:{cut}\:{by}\:{this}\:{plane}\:{if}\:{the}\:{edge} \\ $$$${of}\:{the}\:{cube}\:{is}\:{equal}\:{to}\:\boldsymbol{{a}}. \\ $$

Question Number 20192    Answers: 0   Comments: 0

t_1 =3, t_n =3t_(n−1) +2 ....n>1

$$ \\ $$$${t}_{\mathrm{1}} =\mathrm{3},\:{t}_{{n}} =\mathrm{3}{t}_{{n}−\mathrm{1}} +\mathrm{2}\:\:\:\:\:....{n}>\mathrm{1} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 20202    Answers: 0   Comments: 10

Is definite integral can have negative value? Because I think ∫_a ^b f(x) dx is total area below graph f(x) from x = a until x = b, so it can′t be negative

$$\mathrm{Is}\:\mathrm{definite}\:\mathrm{integral}\:\mathrm{can}\:\mathrm{have}\:\mathrm{negative}\:\mathrm{value}? \\ $$$$\mathrm{Because}\:\mathrm{I}\:\mathrm{think}\:\int_{{a}} ^{{b}} {f}\left({x}\right)\:{dx}\:\mathrm{is}\:\mathrm{total}\:\mathrm{area}\:\mathrm{below} \\ $$$$\mathrm{graph}\:{f}\left({x}\right)\:\mathrm{from}\:{x}\:=\:{a}\:\mathrm{until}\:{x}\:=\:{b},\:\mathrm{so}\:\mathrm{it}\:\mathrm{can}'\mathrm{t} \\ $$$$\mathrm{be}\:\mathrm{negative} \\ $$

Question Number 20182    Answers: 0   Comments: 0

Question Number 20187    Answers: 0   Comments: 1

t_n =(t_(n−1) /n^2 ), t_1 =3;t_2 ,t_3 ,(n≥2)

$${t}_{{n}} =\frac{{t}_{{n}−\mathrm{1}} }{{n}^{\mathrm{2}} },\:{t}_{\mathrm{1}} =\mathrm{3};{t}_{\mathrm{2}} ,{t}_{\mathrm{3}} ,\left({n}\geqslant\mathrm{2}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 20177    Answers: 0   Comments: 0

But ans is (1/(108))

$${But}\:{ans}\:{is}\:\frac{\mathrm{1}}{\mathrm{108}} \\ $$

Question Number 20174    Answers: 2   Comments: 0

(0.1^− )^2 {1−9(0.16^− )^2 }

$$\left(\mathrm{0}.\overset{−} {\mathrm{1}}\right)^{\mathrm{2}} \left\{\mathrm{1}−\mathrm{9}\left(\mathrm{0}.\mathrm{1}\overset{−} {\mathrm{6}}\right)^{\mathrm{2}} \right\} \\ $$

Question Number 20167    Answers: 1   Comments: 0

please solve it integrate with respect to x ∫((5x−2)/(3x^2 +2x+1))

$${please}\:{solve}\:{it} \\ $$$${integrate}\:{with}\:{respect}\:{to}\:{x} \\ $$$$\int\frac{\mathrm{5}{x}−\mathrm{2}}{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}} \\ $$

Question Number 20166    Answers: 1   Comments: 0

∫cosec^2 xdx

$$\int\mathrm{cosec}\:^{\mathrm{2}} {xdx} \\ $$

Question Number 20164    Answers: 1   Comments: 0

∫(e^(tan^(−1) x) /(1+x^2 ))

$$\int\frac{{e}^{\mathrm{tan}^{−\mathrm{1}} {x}} }{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$

  Pg 1874      Pg 1875      Pg 1876      Pg 1877      Pg 1878      Pg 1879      Pg 1880      Pg 1881      Pg 1882      Pg 1883   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com