Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1879

Question Number 10933    Answers: 2   Comments: 0

If p and q are the roots for the x^2 − (a + 1)x + (−a − (5/2)) = 0 The minimum value of p^(2 ) + q^2 is ...

$$\mathrm{If}\:\:{p}\:\:\mathrm{and}\:\:{q}\:\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{for}\:\mathrm{the} \\ $$$${x}^{\mathrm{2}} \:−\:\left({a}\:+\:\mathrm{1}\right){x}\:+\:\left(−{a}\:−\:\frac{\mathrm{5}}{\mathrm{2}}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{The}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\:{p}^{\mathrm{2}\:} +\:{q}^{\mathrm{2}} \:\:\mathrm{is}\:... \\ $$

Question Number 10917    Answers: 1   Comments: 0

hence show that i)((1−cos4θ)/(sin4θ))=tan2θ ii)((1−cos6θ)/(sin6θ))=tan3θ

$${hence}\:{show}\:{that} \\ $$$$\left.{i}\right)\frac{\mathrm{1}−{cos}\mathrm{4}\theta}{{sin}\mathrm{4}\theta}={tan}\mathrm{2}\theta \\ $$$$\left.{ii}\right)\frac{\mathrm{1}−{cos}\mathrm{6}\theta}{{sin}\mathrm{6}\theta}={tan}\mathrm{3}\theta \\ $$

Question Number 10916    Answers: 1   Comments: 0

find all possible values of cosθ such that 2cot^2 θ+cosθ=0

$${find}\:{all}\:{possible}\:{values}\:{of}\:{cos}\theta\:{such} \\ $$$${that}\:\mathrm{2}{cot}^{\mathrm{2}} \theta+{cos}\theta=\mathrm{0} \\ $$

Question Number 10914    Answers: 1   Comments: 0

A 200 N force inclined at 40° above the horizontal , drag load along the horizontal floor. coefficient of the kinetic friction between the load is 0.30 and the load experiences an acceleration of 1.2 m/s^2 , What is the mass of the load.

$$\mathrm{A}\:\mathrm{200}\:\mathrm{N}\:\mathrm{force}\:\mathrm{inclined}\:\mathrm{at}\:\mathrm{40}°\:\mathrm{above}\:\mathrm{the}\:\mathrm{horizontal}\:,\:\mathrm{drag}\:\mathrm{load}\:\mathrm{along}\:\mathrm{the} \\ $$$$\mathrm{horizontal}\:\mathrm{floor}.\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{the}\:\mathrm{kinetic}\:\mathrm{friction}\:\mathrm{between}\:\mathrm{the}\:\mathrm{load}\:\mathrm{is}\:\mathrm{0}.\mathrm{30}\: \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{load}\:\mathrm{experiences}\:\mathrm{an}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{1}.\mathrm{2}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} , \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{the}\:\mathrm{load}. \\ $$

Question Number 10913    Answers: 1   Comments: 0

∫_( 1) ^( 3) x^x dx

$$\int_{\:\mathrm{1}} ^{\:\mathrm{3}} \:\mathrm{x}^{\mathrm{x}} \:\:\mathrm{dx} \\ $$

Question Number 10912    Answers: 0   Comments: 1

5^(log_2 3) is transcendental? General: Let a,b and c algebraic and log_b c transcendental. If a^(log_b c) is algebraic, so b = a^q , with q rational?

$$\mathrm{5}^{\mathrm{log}_{\mathrm{2}} \mathrm{3}} \:\mathrm{is}\:\mathrm{transcendental}? \\ $$$$\mathrm{General}: \\ $$$$\mathrm{Let}\:{a},{b}\:\mathrm{and}\:{c}\:\mathrm{algebraic}\:\mathrm{and}\:\mathrm{log}_{{b}} {c}\: \\ $$$$\mathrm{transcendental}.\:\mathrm{If}\:{a}^{\mathrm{log}_{{b}} {c}} \:\mathrm{is}\:\mathrm{algebraic},\:\mathrm{so} \\ $$$${b}\:=\:{a}^{{q}} ,\:\mathrm{with}\:{q}\:\mathrm{rational}? \\ $$

Question Number 10908    Answers: 1   Comments: 0

Question Number 10907    Answers: 1   Comments: 0

express in partial fraction ((3x+2)/((x^2 −1)(x+1)))

$$\mathrm{express}\:\mathrm{in}\:\mathrm{partial}\:\mathrm{fraction} \\ $$$$\frac{\mathrm{3x}+\mathrm{2}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{x}+\mathrm{1}\right)} \\ $$

Question Number 10906    Answers: 1   Comments: 1

Q . smallest positive x satisfying the equation sin3x+3cosx=2sin2x(sinx+cosx) , is

$${Q}\:.\:\:{smallest}\:{positive}\:{x}\:{satisfying}\:{the}\:{equation} \\ $$$${sin}\mathrm{3}{x}+\mathrm{3}{cosx}=\mathrm{2}{sin}\mathrm{2}{x}\left({sinx}+{cosx}\right)\:,\:{is} \\ $$

Question Number 10903    Answers: 0   Comments: 0

Question Number 10902    Answers: 2   Comments: 0

∫(√(1−x^2 ))dx=?

$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\int\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dx}=? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 10900    Answers: 0   Comments: 1

Question Number 10899    Answers: 1   Comments: 0

Question Number 10898    Answers: 1   Comments: 0

Question Number 10887    Answers: 1   Comments: 0

Suppose that f(x) = (1/(x + 1)) and g(x) = (4/(x + 1)) . Find the domain of each of the composition (a) f o g (b) f o f

$$\mathrm{Suppose}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{x}\:+\:\mathrm{1}}\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{4}}{\mathrm{x}\:+\:\mathrm{1}}\:. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{composition}\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{f}\:\mathrm{o}\:\mathrm{g}\:\:\:\left(\mathrm{b}\right)\:\:\mathrm{f}\:\mathrm{o}\:\mathrm{f} \\ $$

Question Number 10880    Answers: 1   Comments: 0

∫ (x + 3)(√((x + 4))) dx

$$\left.\int\:\left(\mathrm{x}\:+\:\mathrm{3}\right)\sqrt{\left(\mathrm{x}\:+\:\mathrm{4}\right.}\right)\:\mathrm{dx}\: \\ $$

Question Number 10876    Answers: 1   Comments: 0

∫_( 0) ^( 1) ∫_( x) ^( (√x)) (x + y^5 ) dy dx

$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \int_{\:\mathrm{x}} ^{\:\sqrt{\mathrm{x}}} \:\left(\mathrm{x}\:+\:\mathrm{y}^{\mathrm{5}} \right)\:\mathrm{dy}\:\mathrm{dx} \\ $$

Question Number 10889    Answers: 0   Comments: 0

The solution of the Schanuel′s Conjecture will to decide if γ is transcendental or not? Tell me all consequences of the conjecture.

$$\mathrm{The}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{Schanuel}'\mathrm{s}\:\mathrm{Conjecture} \\ $$$$\mathrm{will}\:\mathrm{to}\:\mathrm{decide}\:\mathrm{if}\:\gamma\:\mathrm{is}\:\mathrm{transcendental}\:\mathrm{or}\:\mathrm{not}? \\ $$$$\mathrm{Tell}\:\mathrm{me}\:\mathrm{all}\:\mathrm{consequences}\:\mathrm{of}\:\mathrm{the}\:\mathrm{conjecture}. \\ $$

Question Number 10874    Answers: 1   Comments: 0

If f(x + 3) = 2x^2 − 3x + 5. find f(5)

$$\mathrm{If}\:\:\mathrm{f}\left(\mathrm{x}\:+\:\mathrm{3}\right)\:=\:\mathrm{2x}^{\mathrm{2}} \:−\:\mathrm{3x}\:+\:\mathrm{5}.\:\mathrm{find}\:\:\:\mathrm{f}\left(\mathrm{5}\right) \\ $$

Question Number 10872    Answers: 1   Comments: 0

In a cultural gathering of 400 people, there are 270 men and 200 musicians. Of the latter, 80 are singers. 60 of the women are not musicians and 220 of the men are not singers. How many of the women are musicians but not singers. if there are 150 singers altogether and 40 men are both musicians and singers.

$$\mathrm{In}\:\mathrm{a}\:\mathrm{cultural}\:\mathrm{gathering}\:\mathrm{of}\:\mathrm{400}\:\mathrm{people},\:\mathrm{there}\:\mathrm{are}\:\mathrm{270}\:\mathrm{men}\:\mathrm{and}\:\mathrm{200} \\ $$$$\mathrm{musicians}.\:\mathrm{Of}\:\mathrm{the}\:\mathrm{latter},\:\mathrm{80}\:\mathrm{are}\:\mathrm{singers}.\:\mathrm{60}\:\mathrm{of}\:\mathrm{the}\:\mathrm{women}\:\mathrm{are}\:\mathrm{not}\:\:\mathrm{musicians} \\ $$$$\mathrm{and}\:\mathrm{220}\:\mathrm{of}\:\mathrm{the}\:\mathrm{men}\:\mathrm{are}\:\mathrm{not}\:\mathrm{singers}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{of}\:\mathrm{the}\:\mathrm{women}\:\mathrm{are} \\ $$$$\mathrm{musicians}\:\mathrm{but}\:\mathrm{not}\:\mathrm{singers}.\:\mathrm{if}\:\mathrm{there}\:\mathrm{are}\:\mathrm{150}\:\mathrm{singers}\:\mathrm{altogether}\:\mathrm{and}\: \\ $$$$\mathrm{40}\:\mathrm{men}\:\mathrm{are}\:\mathrm{both}\:\mathrm{musicians}\:\mathrm{and}\:\mathrm{singers}. \\ $$

Question Number 10873    Answers: 1   Comments: 0

without using calculator or table, find the exact value of : sin[tan^(−1) ((1/2))]

$$\mathrm{without}\:\mathrm{using}\:\mathrm{calculator}\:\mathrm{or}\:\mathrm{table},\:\mathrm{find}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{of}\:\:: \\ $$$$\mathrm{sin}\left[\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right] \\ $$

Question Number 10868    Answers: 0   Comments: 0

Question Number 10867    Answers: 0   Comments: 0

(1) Show that : ((x^(2n + 1) − y^(2n + 1) )/(x − y)) = x^(2n ) + x^(2n − 1) y + ... + xy^(2n − 1) + y^(2n) (2) Show that: ((x^(2n) − y^(2n) )/(x − y)) = x^(2n − 1 ) + x^(2n − 2) y + ... + xy^(2n − 2) + y^(2n − 1)

$$\left(\mathrm{1}\right) \\ $$$$\mathrm{Show}\:\mathrm{that}\:: \\ $$$$\frac{\mathrm{x}^{\mathrm{2n}\:+\:\mathrm{1}} \:−\:\mathrm{y}^{\mathrm{2n}\:+\:\mathrm{1}} }{\mathrm{x}\:−\:\mathrm{y}}\:=\:\mathrm{x}^{\mathrm{2n}\:} +\:\mathrm{x}^{\mathrm{2n}\:−\:\mathrm{1}} \mathrm{y}\:+\:...\:+\:\mathrm{xy}^{\mathrm{2n}\:−\:\mathrm{1}} \:+\:\mathrm{y}^{\mathrm{2n}} \\ $$$$\left(\mathrm{2}\right) \\ $$$$\mathrm{Show}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}^{\mathrm{2n}} \:−\:\mathrm{y}^{\mathrm{2n}} }{\mathrm{x}\:−\:\mathrm{y}}\:=\:\mathrm{x}^{\mathrm{2n}\:\:−\:\mathrm{1}\:} +\:\mathrm{x}^{\mathrm{2n}\:−\:\mathrm{2}} \mathrm{y}\:+\:...\:+\:\mathrm{xy}^{\mathrm{2n}\:−\:\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2n}\:−\:\mathrm{1}} \\ $$

Question Number 10865    Answers: 0   Comments: 0

Question Number 10864    Answers: 1   Comments: 0

Question Number 10862    Answers: 2   Comments: 2

Given that: a^ = 3i + 4j + 5k and b^ = 2i + 2j + 3k and c^ = 6i − 7j − 8k. find 3a^ + 2b^ − 3c^

$$\mathrm{Given}\:\mathrm{that}:\:\:\hat {\mathrm{a}}\:=\:\mathrm{3i}\:+\:\mathrm{4j}\:+\:\mathrm{5k}\:\:\mathrm{and}\:\:\hat {\mathrm{b}}\:=\:\mathrm{2i}\:+\:\mathrm{2j}\:+\:\mathrm{3k}\:\:\mathrm{and}\:\:\:\hat {\mathrm{c}}\:=\:\mathrm{6i}\:−\:\mathrm{7j}\:−\:\mathrm{8k}. \\ $$$$\mathrm{find} \\ $$$$\mathrm{3}\hat {\mathrm{a}}\:+\:\mathrm{2}\hat {\mathrm{b}}\:−\:\mathrm{3}\hat {\mathrm{c}} \\ $$

  Pg 1874      Pg 1875      Pg 1876      Pg 1877      Pg 1878      Pg 1879      Pg 1880      Pg 1881      Pg 1882      Pg 1883   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com