Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1878

Question Number 21111    Answers: 0   Comments: 0

STATEMENT-1 : z_1 ^2 + z_2 ^2 + z_3 ^2 + z_4 ^2 = 0 where z_1 , z_2 , z_3 and z_4 are the fourth roots of unity. and STATEMENT-2 : (1)^(1/4) = (cos0° + i sin0°)^(1/4) .

$$\mathrm{STATEMENT}-\mathrm{1}\::\:{z}_{\mathrm{1}} ^{\mathrm{2}} \:+\:{z}_{\mathrm{2}} ^{\mathrm{2}} \:+\:{z}_{\mathrm{3}} ^{\mathrm{2}} \:+\:{z}_{\mathrm{4}} ^{\mathrm{2}} \:= \\ $$$$\mathrm{0}\:\mathrm{where}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{and}\:{z}_{\mathrm{4}} \:\mathrm{are}\:\mathrm{the}\:\mathrm{fourth} \\ $$$$\mathrm{roots}\:\mathrm{of}\:\mathrm{unity}. \\ $$$$\boldsymbol{\mathrm{and}} \\ $$$$\mathrm{STATEMENT}-\mathrm{2}\::\:\left(\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \:=\:\left(\mathrm{cos0}°\:+\right. \\ $$$$\left.{i}\:\mathrm{sin0}°\right)^{\frac{\mathrm{1}}{\mathrm{4}}} . \\ $$

Question Number 21109    Answers: 0   Comments: 2

STATEMENT-1 : The locus of z, if arg(((z − 1)/(z + 1))) = (π/2) is a circle. and STATEMENT-2 : ∣((z − 2)/(z + 2))∣ = (π/2), then the locus of z is a circle.

$$\mathrm{STATEMENT}-\mathrm{1}\::\:\mathrm{The}\:\mathrm{locus}\:\mathrm{of}\:{z},\:\mathrm{if} \\ $$$$\mathrm{arg}\left(\frac{{z}\:−\:\mathrm{1}}{{z}\:+\:\mathrm{1}}\right)\:=\:\frac{\pi}{\mathrm{2}}\:\mathrm{is}\:\mathrm{a}\:\mathrm{circle}. \\ $$$$\boldsymbol{\mathrm{and}} \\ $$$$\mathrm{STATEMENT}-\mathrm{2}\::\:\mid\frac{{z}\:−\:\mathrm{2}}{{z}\:+\:\mathrm{2}}\mid\:=\:\frac{\pi}{\mathrm{2}},\:\mathrm{then} \\ $$$$\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:{z}\:\mathrm{is}\:\mathrm{a}\:\mathrm{circle}. \\ $$

Question Number 21108    Answers: 1   Comments: 0

Let A, B, C be three sets of complex numbers as defined below A = {z : Im z ≥ 1} B = {z : ∣z − 2 − i∣ = 3} C = {z : Re((1 − i)z) = (√2)}. Let z be any point in A ∩ B ∩ C and let w be any point satisfying ∣w − 2 − i∣ < 3. Then, ∣z∣ − ∣w∣ + 3 lies between (1) −6 and 3 (2) −3 and 6 (3) −6 and 6 (4) −3 and 9

$$\mathrm{Let}\:{A},\:{B},\:{C}\:\mathrm{be}\:\mathrm{three}\:\mathrm{sets}\:\mathrm{of}\:\mathrm{complex} \\ $$$$\mathrm{numbers}\:\mathrm{as}\:\mathrm{defined}\:\mathrm{below} \\ $$$${A}\:=\:\left\{{z}\::\:\mathrm{Im}\:{z}\:\geqslant\:\mathrm{1}\right\} \\ $$$${B}\:=\:\left\{{z}\::\:\mid{z}\:−\:\mathrm{2}\:−\:{i}\mid\:=\:\mathrm{3}\right\} \\ $$$${C}\:=\:\left\{{z}\::\:\mathrm{Re}\left(\left(\mathrm{1}\:−\:{i}\right){z}\right)\:=\:\sqrt{\mathrm{2}}\right\}. \\ $$$$\mathrm{Let}\:{z}\:\mathrm{be}\:\mathrm{any}\:\mathrm{point}\:\mathrm{in}\:{A}\:\cap\:{B}\:\cap\:{C}\:\mathrm{and}\:\mathrm{let} \\ $$$${w}\:\mathrm{be}\:\mathrm{any}\:\mathrm{point}\:\mathrm{satisfying}\:\mid{w}\:−\:\mathrm{2}\:−\:{i}\mid\:< \\ $$$$\mathrm{3}.\:\mathrm{Then},\:\mid{z}\mid\:−\:\mid{w}\mid\:+\:\mathrm{3}\:\mathrm{lies}\:\mathrm{between} \\ $$$$\left(\mathrm{1}\right)\:−\mathrm{6}\:\mathrm{and}\:\mathrm{3} \\ $$$$\left(\mathrm{2}\right)\:−\mathrm{3}\:\mathrm{and}\:\mathrm{6} \\ $$$$\left(\mathrm{3}\right)\:−\mathrm{6}\:\mathrm{and}\:\mathrm{6} \\ $$$$\left(\mathrm{4}\right)\:−\mathrm{3}\:\mathrm{and}\:\mathrm{9} \\ $$

Question Number 21107    Answers: 0   Comments: 0

Find out the value of nth derivative of y=e^(msin^(−1) x ) at x=0

$$\mathrm{Find}\:\mathrm{out}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{nth}\:\mathrm{derivative}\:\mathrm{of}\:\mathrm{y}=\mathrm{e}^{\mathrm{msin}^{−\mathrm{1}} \mathrm{x}\:} \:\mathrm{at}\:\mathrm{x}=\mathrm{0} \\ $$

Question Number 21200    Answers: 1   Comments: 1

Suppose an integer x, a natural number n and a prime number p satisfy the equation 7x^2 − 44x + 12 = p^n . Find the largest value of p.

$$\mathrm{Suppose}\:\mathrm{an}\:\mathrm{integer}\:{x},\:\mathrm{a}\:\mathrm{natural} \\ $$$$\mathrm{number}\:{n}\:\mathrm{and}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number}\:{p} \\ $$$$\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{7}{x}^{\mathrm{2}} \:−\:\mathrm{44}{x}\:+\:\mathrm{12}\:=\:{p}^{{n}} . \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{value}\:\mathrm{of}\:{p}. \\ $$

Question Number 21100    Answers: 0   Comments: 1

if 3^(2n+3) =m,find 3^(−n)

$$\mathrm{if}\:\mathrm{3}^{\mathrm{2n}+\mathrm{3}} =\mathrm{m},\mathrm{find}\:\mathrm{3}^{−\mathrm{n}} \\ $$

Question Number 21083    Answers: 0   Comments: 0

4^(sin^2 x) + 4^(cos^2 x) =

$$\mathrm{4}^{\mathrm{sin}^{\mathrm{2}} {x}} +\:\mathrm{4}^{\mathrm{cos}^{\mathrm{2}} {x}} \:= \\ $$

Question Number 21082    Answers: 1   Comments: 0

Solve for x, log_(0.2) (x+5) >0

$$\mathrm{Solve}\:\mathrm{for}\:{x},\:\:\:\mathrm{log}_{\mathrm{0}.\mathrm{2}} \left({x}+\mathrm{5}\right)\:>\mathrm{0} \\ $$

Question Number 21077    Answers: 1   Comments: 0

integrate with respect to x ∫(dx/(9x^2 +6x+10))

$${integrate}\:{with}\:{respect}\:{to}\:{x} \\ $$$$\int\frac{{dx}}{\mathrm{9}{x}^{\mathrm{2}} \:+\mathrm{6}{x}+\mathrm{10}} \\ $$

Question Number 21097    Answers: 1   Comments: 0

Suppose in the plane 10 pairwise nonparallel lines intersect one another. What is the maximum possible number of polygons (with finite areas) that can be formed?

$$\mathrm{Suppose}\:\mathrm{in}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{10}\:\mathrm{pairwise} \\ $$$$\mathrm{nonparallel}\:\mathrm{lines}\:\mathrm{intersect}\:\mathrm{one}\:\mathrm{another}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{possible}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{polygons}\:\left(\mathrm{with}\:\mathrm{finite}\:\mathrm{areas}\right)\:\mathrm{that}\:\mathrm{can} \\ $$$$\mathrm{be}\:\mathrm{formed}? \\ $$

Question Number 21071    Answers: 2   Comments: 0

The values of ′k′ for which the equation ∣x∣^2 (∣x∣^2 − 2k + 1) = 1 − k^2 , has repeated roots, when k belongs to (1) {1, −1} (2) {0, 1} (3) {0, −1} (4) {2, 3}

$$\mathrm{The}\:\mathrm{values}\:\mathrm{of}\:'{k}'\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mid{x}\mid^{\mathrm{2}} \left(\mid{x}\mid^{\mathrm{2}} \:−\:\mathrm{2}{k}\:+\:\mathrm{1}\right)\:=\:\mathrm{1}\:−\:{k}^{\mathrm{2}} ,\:\mathrm{has} \\ $$$$\mathrm{repeated}\:\mathrm{roots},\:\mathrm{when}\:{k}\:\mathrm{belongs}\:\mathrm{to} \\ $$$$\left(\mathrm{1}\right)\:\left\{\mathrm{1},\:−\mathrm{1}\right\} \\ $$$$\left(\mathrm{2}\right)\:\left\{\mathrm{0},\:\mathrm{1}\right\} \\ $$$$\left(\mathrm{3}\right)\:\left\{\mathrm{0},\:−\mathrm{1}\right\} \\ $$$$\left(\mathrm{4}\right)\:\left\{\mathrm{2},\:\mathrm{3}\right\} \\ $$

Question Number 21070    Answers: 1   Comments: 2

Let us consider an equation f(x) = x^3 − 3x + k = 0. Then the values of k for which the equation has 1. Exactly one root which is positive, then k belongs to 2. Exactly one root which is negative, then k belongs to 3. One negative and two positive root if k belongs to

$$\mathrm{Let}\:\mathrm{us}\:\mathrm{consider}\:\mathrm{an}\:\mathrm{equation}\:{f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \\ $$$$−\:\mathrm{3}{x}\:+\:{k}\:=\:\mathrm{0}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:{k}\:\mathrm{for} \\ $$$$\mathrm{which}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{has} \\ $$$$\mathrm{1}.\:\mathrm{Exactly}\:\mathrm{one}\:\mathrm{root}\:\mathrm{which}\:\mathrm{is}\:\mathrm{positive}, \\ $$$$\mathrm{then}\:{k}\:\mathrm{belongs}\:\mathrm{to} \\ $$$$\mathrm{2}.\:\mathrm{Exactly}\:\mathrm{one}\:\mathrm{root}\:\mathrm{which}\:\mathrm{is}\:\mathrm{negative}, \\ $$$$\mathrm{then}\:{k}\:\mathrm{belongs}\:\mathrm{to} \\ $$$$\mathrm{3}.\:\mathrm{One}\:\mathrm{negative}\:\mathrm{and}\:\mathrm{two}\:\mathrm{positive}\:\mathrm{root} \\ $$$$\mathrm{if}\:{k}\:\mathrm{belongs}\:\mathrm{to} \\ $$

Question Number 21067    Answers: 2   Comments: 0

∀n∈N, prove 9∣[n^3 +(n+1)^3 +(n+2)^3 ]

$$\forall{n}\in\mathbb{N},\:{prove}\:\mathrm{9}\mid\left[{n}^{\mathrm{3}} +\left({n}+\mathrm{1}\right)^{\mathrm{3}} +\left({n}+\mathrm{2}\right)^{\mathrm{3}} \right] \\ $$

Question Number 21076    Answers: 1   Comments: 0

integrate with respect to x ∫x^(sinx)

$${integrate}\:{with}\:{respect}\:{to}\:{x} \\ $$$$\int{x}^{{sinx}} \\ $$

Question Number 21060    Answers: 0   Comments: 8

write sin 1° in surd form please show workings.

$$\mathrm{write}\:\mathrm{sin}\:\mathrm{1}°\:\mathrm{in}\:\mathrm{surd}\:\mathrm{form} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{show}\:\mathrm{workings}. \\ $$

Question Number 21140    Answers: 1   Comments: 1

if tan β=((2sin αsin γ)/(sin (α+γ))) so proof cot γ+cot α=2cot β

$${if}\:\mathrm{tan}\:\beta=\frac{\mathrm{2sin}\:\alpha\mathrm{sin}\:\gamma}{\mathrm{sin}\:\left(\alpha+\gamma\right)} \\ $$$${so}\:{proof}\:\mathrm{cot}\:\gamma+\mathrm{cot}\:\alpha=\mathrm{2cot}\:\beta \\ $$

Question Number 21053    Answers: 0   Comments: 0

Question Number 21050    Answers: 1   Comments: 0

The most general solution of the equation sinx + cosx = min_(a∈R) {1, a^2 − 4a + 6} is

$$\mathrm{The}\:\mathrm{most}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{sin}{x}\:+\:\mathrm{cos}{x}\:=\:\underset{{a}\in{R}} {\mathrm{min}}\left\{\mathrm{1},\:{a}^{\mathrm{2}} \:−\:\mathrm{4}{a}\:+\:\mathrm{6}\right\} \\ $$$$\mathrm{is} \\ $$

Question Number 21048    Answers: 0   Comments: 0

If the equation 2cos2x − (a + 7)cosx + 3a − 13 = 0 possesses atleast one real solution, then the maximum integral value of ′a′ can be

$$\mathrm{If}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{2cos2}{x}\:−\:\left({a}\:+\:\mathrm{7}\right)\mathrm{cos}{x}\:+ \\ $$$$\mathrm{3}{a}\:−\:\mathrm{13}\:=\:\mathrm{0}\:\mathrm{possesses}\:\mathrm{atleast}\:\mathrm{one}\:\mathrm{real} \\ $$$$\mathrm{solution},\:\mathrm{then}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{integral} \\ $$$$\mathrm{value}\:\mathrm{of}\:'{a}'\:\mathrm{can}\:\mathrm{be} \\ $$

Question Number 21038    Answers: 1   Comments: 1

Question Number 21031    Answers: 0   Comments: 0

if :∀ε>0, ∀(a,b)∈R^2 ,a<b+ε prove: a≤b

$${if}\::\forall\epsilon>\mathrm{0},\:\forall\left({a},{b}\right)\in\mathbb{R}^{\mathrm{2}} ,{a}<{b}+\epsilon \\ $$$${prove}:\:{a}\leqslant{b} \\ $$

Question Number 21029    Answers: 0   Comments: 0

Question Number 21021    Answers: 1   Comments: 2

Question Number 21015    Answers: 0   Comments: 0

Question Number 21013    Answers: 1   Comments: 1

Question Number 21012    Answers: 1   Comments: 3

A spring with one end attached to a mass and the other to a rigid support is stretched and released. (a) Magnitude of acceleration, when just released is maximum. (b) Magnitude of acceleration, when at equilibrium position, is maximum. (c) Speed is maximum when mass is at equilibrium position. (d) Magnitude of displacement is always maximum whenever speed is minimum.

$$\mathrm{A}\:\mathrm{spring}\:\mathrm{with}\:\mathrm{one}\:\mathrm{end}\:\mathrm{attached}\:\mathrm{to}\:\mathrm{a} \\ $$$$\mathrm{mass}\:\mathrm{and}\:\mathrm{the}\:\mathrm{other}\:\mathrm{to}\:\mathrm{a}\:\mathrm{rigid}\:\mathrm{support}\:\mathrm{is} \\ $$$$\mathrm{stretched}\:\mathrm{and}\:\mathrm{released}. \\ $$$$\left({a}\right)\:\mathrm{Magnitude}\:\mathrm{of}\:\mathrm{acceleration},\:\mathrm{when} \\ $$$$\mathrm{just}\:\mathrm{released}\:\mathrm{is}\:\mathrm{maximum}. \\ $$$$\left({b}\right)\:\mathrm{Magnitude}\:\mathrm{of}\:\mathrm{acceleration},\:\mathrm{when} \\ $$$$\mathrm{at}\:\mathrm{equilibrium}\:\mathrm{position},\:\mathrm{is}\:\mathrm{maximum}. \\ $$$$\left({c}\right)\:\mathrm{Speed}\:\mathrm{is}\:\mathrm{maximum}\:\mathrm{when}\:\mathrm{mass}\:\mathrm{is}\:\mathrm{at} \\ $$$$\mathrm{equilibrium}\:\mathrm{position}. \\ $$$$\left({d}\right)\:\mathrm{Magnitude}\:\mathrm{of}\:\mathrm{displacement}\:\mathrm{is} \\ $$$$\mathrm{always}\:\mathrm{maximum}\:\mathrm{whenever}\:\mathrm{speed}\:\mathrm{is} \\ $$$$\mathrm{minimum}. \\ $$

  Pg 1873      Pg 1874      Pg 1875      Pg 1876      Pg 1877      Pg 1878      Pg 1879      Pg 1880      Pg 1881      Pg 1882   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com