Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1876

Question Number 21917    Answers: 0   Comments: 4

How many seven letter words can be formed by using the letters of the word SUCCESS so that neither two C nor two S are together?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{seven}\:\mathrm{letter}\:\mathrm{words}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{formed}\:\mathrm{by}\:\mathrm{using}\:\mathrm{the}\:\mathrm{letters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word} \\ $$$$\mathrm{SUCCESS}\:\mathrm{so}\:\mathrm{that}\:\mathrm{neither}\:\mathrm{two}\:\mathrm{C}\:\mathrm{nor} \\ $$$$\mathrm{two}\:\mathrm{S}\:\mathrm{are}\:\mathrm{together}? \\ $$

Question Number 21913    Answers: 0   Comments: 0

Let a_n denote the number of all n-digit positive integers formed by the digits 0, 1 or both such that no consecutive digits in them are 0. Let b_n = the number of such n-digit integers ending with digit 1 and c_n = the number of such n-digit integers ending with digit 0. 1. Which of the following is correct? (1) a_(17) = a_(16) + a_(15) (2) c_(17) ≠ c_(16) + c_(15) (3) b_(17) ≠ b_(16) + c_(16) (4) a_(17) = c_(17) + b_(16) 2. The value of b_6 is

$$\mathrm{Let}\:{a}_{{n}} \:\mathrm{denote}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{all}\:{n}-\mathrm{digit} \\ $$$$\mathrm{positive}\:\mathrm{integers}\:\mathrm{formed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{digits} \\ $$$$\mathrm{0},\:\mathrm{1}\:\mathrm{or}\:\mathrm{both}\:\mathrm{such}\:\mathrm{that}\:\mathrm{no}\:\mathrm{consecutive} \\ $$$$\mathrm{digits}\:\mathrm{in}\:\mathrm{them}\:\mathrm{are}\:\mathrm{0}.\:\mathrm{Let}\:{b}_{{n}} \:=\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{such}\:{n}-\mathrm{digit}\:\mathrm{integers}\:\mathrm{ending} \\ $$$$\mathrm{with}\:\mathrm{digit}\:\mathrm{1}\:\mathrm{and}\:{c}_{{n}} \:=\:\mathrm{the}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{such}\:{n}-\mathrm{digit}\:\mathrm{integers}\:\mathrm{ending}\:\mathrm{with} \\ $$$$\mathrm{digit}\:\mathrm{0}. \\ $$$$\mathrm{1}.\:\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{correct}? \\ $$$$\left(\mathrm{1}\right)\:{a}_{\mathrm{17}} \:=\:{a}_{\mathrm{16}} \:+\:{a}_{\mathrm{15}} \\ $$$$\left(\mathrm{2}\right)\:{c}_{\mathrm{17}} \:\neq\:{c}_{\mathrm{16}} \:+\:{c}_{\mathrm{15}} \\ $$$$\left(\mathrm{3}\right)\:{b}_{\mathrm{17}} \:\neq\:{b}_{\mathrm{16}} \:+\:{c}_{\mathrm{16}} \\ $$$$\left(\mathrm{4}\right)\:{a}_{\mathrm{17}} \:=\:{c}_{\mathrm{17}} \:+\:{b}_{\mathrm{16}} \\ $$$$\mathrm{2}.\:\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:{b}_{\mathrm{6}} \:\mathrm{is} \\ $$

Question Number 21904    Answers: 0   Comments: 3

Compute the area of a loop of the curve ((x^2 /a^2 )+(y^2 /b^2 ))=((2xy)/c^2 ) .

$${Compute}\:{the}\:{area}\:{of}\:{a}\:{loop}\:{of}\:{the} \\ $$$${curve}\:\left(\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\right)=\frac{\mathrm{2}{xy}}{{c}^{\mathrm{2}} }\:. \\ $$

Question Number 21903    Answers: 0   Comments: 0

ΔABC with sides a, b, c ∈ Z and ∠A = 3∠B If its circumference is minimum, then find a, b, c

$$\Delta{ABC}\:\mathrm{with}\:\mathrm{sides}\:{a},\:{b},\:{c}\:\in\:\mathbb{Z}\:\mathrm{and}\:\angle{A}\:=\:\mathrm{3}\angle{B} \\ $$$$\mathrm{If}\:\mathrm{its}\:\mathrm{circumference}\:\mathrm{is}\:\mathrm{minimum},\:\mathrm{then}\:\mathrm{find}\:{a},\:{b},\:{c} \\ $$

Question Number 21889    Answers: 1   Comments: 0

If a,b, and A of a triangle are fixed and two possible values of the third side be c_1 and c_2 such that c_1 ^2 +c_1 c_2 +c_2 ^2 =a^2 , then find angle A.

$${If}\:{a},{b},\:{and}\:{A}\:{of}\:{a}\:{triangle}\:\:{are}\: \\ $$$${fixed}\:{and}\:{two}\:{possible}\:{values}\:{of}\:{the}\: \\ $$$${third}\:{side}\:{be}\:{c}_{\mathrm{1}} {and}\:{c}_{\mathrm{2}} {such}\:{that} \\ $$$$\boldsymbol{{c}}_{\mathrm{1}} ^{\mathrm{2}} +\boldsymbol{{c}}_{\mathrm{1}} \boldsymbol{{c}}_{\mathrm{2}} +\boldsymbol{{c}}_{\mathrm{2}} ^{\mathrm{2}} =\boldsymbol{{a}}^{\mathrm{2}} ,\:{then}\:{find}\:{angle}\:{A}. \\ $$

Question Number 21877    Answers: 2   Comments: 3

x=^3 (√(7+5(√2)))+^3 (√(7−5(√2))) 1. According to a video, x=2 2. According to WolframAlpha, x≈0.2071+0.3587i for “principal root” and x=2(√2) for “real-valued root” 3. According to google, x≈2.8284 Please help and explain! :)

$${x}=^{\mathrm{3}} \sqrt{\mathrm{7}+\mathrm{5}\sqrt{\mathrm{2}}}+^{\mathrm{3}} \sqrt{\mathrm{7}−\mathrm{5}\sqrt{\mathrm{2}}} \\ $$$$\: \\ $$$$\mathrm{1}.\:\mathrm{According}\:\mathrm{to}\:\mathrm{a}\:\mathrm{video},\:{x}=\mathrm{2} \\ $$$$\: \\ $$$$\mathrm{2}.\:\mathrm{According}\:\mathrm{to}\:\mathrm{WolframAlpha}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{x}\approx\mathrm{0}.\mathrm{2071}+\mathrm{0}.\mathrm{3587}{i}\:\:\mathrm{for}\:``\mathrm{principal}\:\mathrm{root}'' \\ $$$$\mathrm{and}\:\:\:{x}=\mathrm{2}\sqrt{\mathrm{2}}\:\:\mathrm{for}\:``\mathrm{real}-\mathrm{valued}\:\mathrm{root}'' \\ $$$$\: \\ $$$$\mathrm{3}.\:\mathrm{According}\:\mathrm{to}\:\mathrm{google},\:{x}\approx\mathrm{2}.\mathrm{8284} \\ $$$$\: \\ $$$$\left.\mathrm{Please}\:\mathrm{help}\:\mathrm{and}\:\mathrm{explain}!\:\:\::\right) \\ $$

Question Number 21874    Answers: 2   Comments: 0

Find the remainder if 2^(2006) is divided by 17

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{if}\:\:\:\mathrm{2}^{\mathrm{2006}} \:\mathrm{is}\:\mathrm{divided}\:\mathrm{by}\:\:\mathrm{17} \\ $$

Question Number 21870    Answers: 1   Comments: 0

A wire of mass 9.8 × 10^(−3) kg per meter passes over a frictionless pulley fixed on the top of an inclined frictionless plane which makes an angle of 30° with the horizontal. Masses M_1 and M_2 are tied at the two ends of the wire. The mass M_1 rests on the plane and the mass M_2 hangs freely vertically downward. The whole system is in equilibrium. Now a transverse wave propagates along the wire with a velocity of 100 m/s. Find M_1 and M_2 (g = 9.8 m/s^2 ).

$$\mathrm{A}\:\mathrm{wire}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{9}.\mathrm{8}\:×\:\mathrm{10}^{−\mathrm{3}} \:\mathrm{kg}\:\mathrm{per}\:\mathrm{meter} \\ $$$$\mathrm{passes}\:\mathrm{over}\:\mathrm{a}\:\mathrm{frictionless}\:\mathrm{pulley}\:\mathrm{fixed} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{an}\:\mathrm{inclined}\:\mathrm{frictionless} \\ $$$$\mathrm{plane}\:\mathrm{which}\:\mathrm{makes}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{30}°\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{horizontal}.\:\mathrm{Masses}\:{M}_{\mathrm{1}} \:\mathrm{and}\:{M}_{\mathrm{2}} \:\mathrm{are} \\ $$$$\mathrm{tied}\:\mathrm{at}\:\mathrm{the}\:\mathrm{two}\:\mathrm{ends}\:\mathrm{of}\:\mathrm{the}\:\mathrm{wire}.\:\mathrm{The} \\ $$$$\mathrm{mass}\:{M}_{\mathrm{1}} \:\mathrm{rests}\:\mathrm{on}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{mass}\:{M}_{\mathrm{2}} \:\mathrm{hangs}\:\mathrm{freely}\:\mathrm{vertically} \\ $$$$\mathrm{downward}.\:\mathrm{The}\:\mathrm{whole}\:\mathrm{system}\:\mathrm{is}\:\mathrm{in} \\ $$$$\mathrm{equilibrium}.\:\mathrm{Now}\:\mathrm{a}\:\mathrm{transverse}\:\mathrm{wave} \\ $$$$\mathrm{propagates}\:\mathrm{along}\:\mathrm{the}\:\mathrm{wire}\:\mathrm{with}\:\mathrm{a} \\ $$$$\mathrm{velocity}\:\mathrm{of}\:\mathrm{100}\:\mathrm{m}/\mathrm{s}.\:\mathrm{Find}\:{M}_{\mathrm{1}} \:\mathrm{and}\:{M}_{\mathrm{2}} \\ $$$$\left({g}\:=\:\mathrm{9}.\mathrm{8}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right). \\ $$

Question Number 21840    Answers: 1   Comments: 0

A cone is placed inside a sphere. If volume of the cone is maximum, find the ratio of radius from the cone and sphere

$$\mathrm{A}\:\mathrm{cone}\:\mathrm{is}\:\mathrm{placed}\:\mathrm{inside}\:\mathrm{a}\:\mathrm{sphere}. \\ $$$$\mathrm{If}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cone}\:\mathrm{is}\:\mathrm{maximum}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{from}\:\mathrm{the}\:\mathrm{cone}\:\mathrm{and}\:\mathrm{sphere} \\ $$

Question Number 21837    Answers: 0   Comments: 4

Question Number 21825    Answers: 0   Comments: 2

Find the simplest form of Σ_(k = 1) ^n 2^k [sin^2 (((2kπ)/3)) + (1/4)]

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{simplest}\:\mathrm{form}\:\mathrm{of} \\ $$$$\underset{{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}} \left[\mathrm{sin}^{\mathrm{2}} \:\left(\frac{\mathrm{2}{k}\pi}{\mathrm{3}}\right)\:+\:\frac{\mathrm{1}}{\mathrm{4}}\right] \\ $$

Question Number 21964    Answers: 1   Comments: 0

Question Number 21965    Answers: 1   Comments: 0

integrate ∫sin^3 xdx

$${integrate} \\ $$$$\int{sin}^{\mathrm{3}} {xdx} \\ $$

Question Number 22051    Answers: 0   Comments: 3

I have recently seen a different notation for integration, written as: ∫dxf(x) e.g. ∫dx(x+1)^2 Is this the same as: ∫f(x)dx ⇒ =∫(x+1)^2 dx ???

$$\mathrm{I}\:\mathrm{have}\:\mathrm{recently}\:\mathrm{seen}\:\mathrm{a}\:\mathrm{different}\:\mathrm{notation} \\ $$$$\mathrm{for}\:\mathrm{integration},\:\mathrm{written}\:\mathrm{as}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int{dxf}\left({x}\right) \\ $$$${e}.{g}. \\ $$$$\:\:\:\:\:\:\int{dx}\left({x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\: \\ $$$$\mathrm{Is}\:\mathrm{this}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int{f}\left({x}\right){dx} \\ $$$$\Rightarrow\:\:\:\:=\int\left({x}+\mathrm{1}\right)^{\mathrm{2}} {dx} \\ $$$$??? \\ $$

Question Number 21819    Answers: 0   Comments: 3

Consider the situation shown in figure in which a block P of mass 2 kg is placed over a block Q of mass 4 kg. The combination of the blocks are placed on inclined plane of inclination 37° with horizontal. The coefficient of friction between Block Q and inclined plane is μ_2 and in between the two blocks is μ_1 . The system is released from rest, then when will be the frictional force acting between the block is zero? (p) μ_1 = 0.4; μ_2 = 0 (q) μ_1 = 0.8; μ_2 = 0.8 (r) μ_1 = 0.4; μ_2 = 0.5 (s) μ_1 = 0.5; μ_2 = 0.4 (t) μ_1 = 0; μ_2 = 0.4

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{situation}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{figure} \\ $$$$\mathrm{in}\:\mathrm{which}\:\mathrm{a}\:\mathrm{block}\:{P}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{2}\:\mathrm{kg}\:\mathrm{is}\:\mathrm{placed} \\ $$$$\mathrm{over}\:\mathrm{a}\:\mathrm{block}\:{Q}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{4}\:\mathrm{kg}.\:\mathrm{The} \\ $$$$\mathrm{combination}\:\mathrm{of}\:\mathrm{the}\:\mathrm{blocks}\:\mathrm{are}\:\mathrm{placed}\:\mathrm{on} \\ $$$$\mathrm{inclined}\:\mathrm{plane}\:\mathrm{of}\:\mathrm{inclination}\:\mathrm{37}°\:\mathrm{with} \\ $$$$\mathrm{horizontal}.\:\mathrm{The}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{friction} \\ $$$$\mathrm{between}\:\mathrm{Block}\:{Q}\:\mathrm{and}\:\mathrm{inclined}\:\mathrm{plane}\:\mathrm{is} \\ $$$$\mu_{\mathrm{2}} \:\mathrm{and}\:\mathrm{in}\:\mathrm{between}\:\mathrm{the}\:\mathrm{two}\:\mathrm{blocks}\:\mathrm{is}\:\mu_{\mathrm{1}} . \\ $$$$\mathrm{The}\:\mathrm{system}\:\mathrm{is}\:\mathrm{released}\:\mathrm{from}\:\mathrm{rest},\:\mathrm{then} \\ $$$$\mathrm{when}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{frictional}\:\mathrm{force} \\ $$$$\mathrm{acting}\:\mathrm{between}\:\mathrm{the}\:\mathrm{block}\:\mathrm{is}\:\mathrm{zero}? \\ $$$$\left(\mathrm{p}\right)\:\mu_{\mathrm{1}} \:=\:\mathrm{0}.\mathrm{4};\:\mu_{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\left(\mathrm{q}\right)\:\mu_{\mathrm{1}} \:=\:\mathrm{0}.\mathrm{8};\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\mathrm{8} \\ $$$$\left(\mathrm{r}\right)\:\mu_{\mathrm{1}} \:=\:\mathrm{0}.\mathrm{4};\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\mathrm{5} \\ $$$$\left(\mathrm{s}\right)\:\mu_{\mathrm{1}} \:=\:\mathrm{0}.\mathrm{5};\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\mathrm{4} \\ $$$$\left(\mathrm{t}\right)\:\mu_{\mathrm{1}} \:=\:\mathrm{0};\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\mathrm{4} \\ $$

Question Number 21867    Answers: 0   Comments: 0

The number of points in the cartesian plane with integral coordinates satisfying the inequalities ∣x∣ ≤ 4, ∣y∣ ≤ 4 and ∣x − y∣ ≤ 4 is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{points}\:\mathrm{in}\:\mathrm{the}\:\mathrm{cartesian} \\ $$$$\mathrm{plane}\:\mathrm{with}\:\mathrm{integral}\:\mathrm{coordinates} \\ $$$$\mathrm{satisfying}\:\mathrm{the}\:\mathrm{inequalities}\:\mid{x}\mid\:\leqslant\:\mathrm{4},\:\mid{y}\mid\:\leqslant \\ $$$$\mathrm{4}\:\mathrm{and}\:\mid{x}\:−\:{y}\mid\:\leqslant\:\mathrm{4}\:\mathrm{is} \\ $$

Question Number 21815    Answers: 0   Comments: 2

sin18^0 =

$${sin}\mathrm{18}^{\mathrm{0}} = \\ $$

Question Number 21813    Answers: 0   Comments: 0

x_1 +x_2 +x_3 =5 ways=5−1C_(3−1) =4C_2 =6

$${x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} =\mathrm{5} \\ $$$${ways}=\mathrm{5}−\mathrm{1}{C}_{\mathrm{3}−\mathrm{1}} =\mathrm{4}{C}_{\mathrm{2}} =\mathrm{6} \\ $$

Question Number 21811    Answers: 0   Comments: 1

a_1 =1, a_(n+1) =(a_n /(√(a_n +n+1))) Σ_(n=1) ^∞ a_n =?

$${a}_{\mathrm{1}} =\mathrm{1},\:{a}_{{n}+\mathrm{1}} =\frac{{a}_{{n}} }{\sqrt{{a}_{{n}} +{n}+\mathrm{1}}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{a}_{{n}} =? \\ $$

Question Number 21810    Answers: 1   Comments: 0

integrate ∫(x^2 /(√(1−x^2 )))dx

$${integrate} \\ $$$$\int\frac{{x}^{\mathrm{2}} }{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 21802    Answers: 1   Comments: 1

Five balls are to be placed in three boxes. Each can hold all the five balls. In how many different ways can we place the balls so that no box remains empty, if balls are different but boxes are identical?

$$\mathrm{Five}\:\mathrm{balls}\:\mathrm{are}\:\mathrm{to}\:\mathrm{be}\:\mathrm{placed}\:\mathrm{in}\:\mathrm{three} \\ $$$$\mathrm{boxes}.\:\mathrm{Each}\:\mathrm{can}\:\mathrm{hold}\:\mathrm{all}\:\mathrm{the}\:\mathrm{five}\:\mathrm{balls}. \\ $$$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{different}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{we} \\ $$$$\mathrm{place}\:\mathrm{the}\:\mathrm{balls}\:\mathrm{so}\:\mathrm{that}\:\mathrm{no}\:\mathrm{box}\:\mathrm{remains} \\ $$$$\mathrm{empty},\:\mathrm{if}\:\mathrm{balls}\:\mathrm{are}\:\mathrm{different}\:\mathrm{but}\:\mathrm{boxes} \\ $$$$\mathrm{are}\:\mathrm{identical}? \\ $$

Question Number 21801    Answers: 0   Comments: 0

There are n straight lines in a plane, no two of which are parallel and no three pass through the same point. Their point of intersection are joined. Then the number of fresh lines thus obtained is

$$\mathrm{There}\:\mathrm{are}\:{n}\:\mathrm{straight}\:\mathrm{lines}\:\mathrm{in}\:\mathrm{a}\:\mathrm{plane},\:\mathrm{no} \\ $$$$\mathrm{two}\:\mathrm{of}\:\mathrm{which}\:\mathrm{are}\:\mathrm{parallel}\:\mathrm{and}\:\mathrm{no}\:\mathrm{three} \\ $$$$\mathrm{pass}\:\mathrm{through}\:\mathrm{the}\:\mathrm{same}\:\mathrm{point}.\:\mathrm{Their} \\ $$$$\mathrm{point}\:\mathrm{of}\:\mathrm{intersection}\:\mathrm{are}\:\mathrm{joined}.\:\mathrm{Then} \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{fresh}\:\mathrm{lines}\:\mathrm{thus}\:\mathrm{obtained} \\ $$$$\mathrm{is} \\ $$

Question Number 21800    Answers: 0   Comments: 2

The number of integers which lie between 1 and 10^6 and which have sum of digits equal to 12 is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{integers}\:\mathrm{which}\:\mathrm{lie} \\ $$$$\mathrm{between}\:\mathrm{1}\:\mathrm{and}\:\mathrm{10}^{\mathrm{6}} \:\mathrm{and}\:\mathrm{which}\:\mathrm{have}\:\mathrm{sum} \\ $$$$\mathrm{of}\:\mathrm{digits}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{12}\:\mathrm{is} \\ $$

Question Number 21799    Answers: 0   Comments: 2

There are n white and n red balls marked 1, 2, 3, ....n. The number of ways we can arrange these balls in a row so that neighbouring balls are of different colours is

$$\mathrm{There}\:\mathrm{are}\:{n}\:\mathrm{white}\:\mathrm{and}\:{n}\:\mathrm{red}\:\mathrm{balls} \\ $$$$\mathrm{marked}\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:....{n}.\:\mathrm{The}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{ways}\:\mathrm{we}\:\mathrm{can}\:\mathrm{arrange}\:\mathrm{these}\:\mathrm{balls}\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{row}\:\mathrm{so}\:\mathrm{that}\:\mathrm{neighbouring}\:\mathrm{balls}\:\mathrm{are}\:\mathrm{of} \\ $$$$\mathrm{different}\:\mathrm{colours}\:\mathrm{is} \\ $$

Question Number 21795    Answers: 1   Comments: 3

help x∈N determine x where 7 divise 2^x +3^x

$${help} \\ $$$${x}\in{N} \\ $$$${determine}\:{x}\:{where}\:\mathrm{7}\:{divise}\:\mathrm{2}^{{x}} +\mathrm{3}^{{x}} \\ $$$$ \\ $$

Question Number 21793    Answers: 0   Comments: 6

A plank of mass 10 kg rests on a smooth horizontal surface. Two blocks A and B of masses m_A = 2 kg and m_B = 1 kg lies at a distance of 3 m on the plank. The friction coefficient between the blocks and plank are μ_A = 0.3 and μ_B = 0.1. Now a force F = 15 N is applied to the plank in horizontal direction. Find the times (in sec) after which block A collides with B.

$$\mathrm{A}\:\mathrm{plank}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{10}\:\mathrm{kg}\:\mathrm{rests}\:\mathrm{on}\:\mathrm{a}\:\mathrm{smooth} \\ $$$$\mathrm{horizontal}\:\mathrm{surface}.\:\mathrm{Two}\:\mathrm{blocks}\:\mathrm{A}\:\mathrm{and} \\ $$$$\mathrm{B}\:\mathrm{of}\:\mathrm{masses}\:\mathrm{m}_{\mathrm{A}} \:=\:\mathrm{2}\:\mathrm{kg}\:\mathrm{and}\:\mathrm{m}_{\mathrm{B}} \:=\:\mathrm{1}\:\mathrm{kg} \\ $$$$\mathrm{lies}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{3}\:\mathrm{m}\:\mathrm{on}\:\mathrm{the}\:\mathrm{plank}. \\ $$$$\mathrm{The}\:\mathrm{friction}\:\mathrm{coefficient}\:\mathrm{between}\:\mathrm{the} \\ $$$$\mathrm{blocks}\:\mathrm{and}\:\mathrm{plank}\:\mathrm{are}\:\mu_{\mathrm{A}} \:=\:\mathrm{0}.\mathrm{3}\:\mathrm{and}\:\mu_{\mathrm{B}} \:= \\ $$$$\mathrm{0}.\mathrm{1}.\:\mathrm{Now}\:\mathrm{a}\:\mathrm{force}\:\mathrm{F}\:=\:\mathrm{15}\:\mathrm{N}\:\mathrm{is}\:\mathrm{applied}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{plank}\:\mathrm{in}\:\mathrm{horizontal}\:\mathrm{direction}.\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{times}\:\left(\mathrm{in}\:\mathrm{sec}\right)\:\mathrm{after}\:\mathrm{which}\:\mathrm{block}\:\mathrm{A} \\ $$$$\mathrm{collides}\:\mathrm{with}\:\mathrm{B}. \\ $$

  Pg 1871      Pg 1872      Pg 1873      Pg 1874      Pg 1875      Pg 1876      Pg 1877      Pg 1878      Pg 1879      Pg 1880   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com