Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1876

Question Number 21732    Answers: 0   Comments: 2

(i) Find the first three terms in the expansion of (2 − x)^6 in ascending power of x. (ii) Find the value of k for which there is no term in x^2 in the expansion (1 + kx)(2 − x)^6

$$\left(\mathrm{i}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{first}\:\mathrm{three}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{2}\:−\:\mathrm{x}\right)^{\mathrm{6}} \:\mathrm{in}\:\mathrm{ascending}\:\mathrm{power} \\ $$$$\mathrm{of}\:\mathrm{x}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{k}\:\mathrm{for}\:\mathrm{which}\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{term}\:\mathrm{in}\:\mathrm{x}^{\mathrm{2}} \:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion} \\ $$$$\left(\mathrm{1}\:+\:\mathrm{kx}\right)\left(\mathrm{2}\:−\:\mathrm{x}\right)^{\mathrm{6}} \\ $$

Question Number 21731    Answers: 0   Comments: 0

A very flexible uniform chain of mass M and length L is suspended vertically so that its lower end just touches the surface of a table. When the upper end of the chain is released, it falls with each link coming to rest the instant it strikes the table. Find the force exerted by the chain on the table at the moment when x part of chain has already rested on the table.

$$\mathrm{A}\:\mathrm{very}\:\mathrm{flexible}\:\mathrm{uniform}\:\mathrm{chain}\:\mathrm{of}\:\mathrm{mass}\:{M} \\ $$$$\mathrm{and}\:\mathrm{length}\:{L}\:\mathrm{is}\:\mathrm{suspended}\:\mathrm{vertically}\:\mathrm{so} \\ $$$$\mathrm{that}\:\mathrm{its}\:\mathrm{lower}\:\mathrm{end}\:\mathrm{just}\:\mathrm{touches}\:\mathrm{the} \\ $$$$\mathrm{surface}\:\mathrm{of}\:\mathrm{a}\:\mathrm{table}.\:\mathrm{When}\:\mathrm{the}\:\mathrm{upper}\:\mathrm{end} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{chain}\:\mathrm{is}\:\mathrm{released},\:\mathrm{it}\:\mathrm{falls}\:\mathrm{with} \\ $$$$\mathrm{each}\:\mathrm{link}\:\mathrm{coming}\:\mathrm{to}\:\mathrm{rest}\:\mathrm{the}\:\mathrm{instant}\:\mathrm{it} \\ $$$$\mathrm{strikes}\:\mathrm{the}\:\mathrm{table}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{force}\:\mathrm{exerted} \\ $$$$\mathrm{by}\:\mathrm{the}\:\mathrm{chain}\:\mathrm{on}\:\mathrm{the}\:\mathrm{table}\:\mathrm{at}\:\mathrm{the}\:\mathrm{moment} \\ $$$$\mathrm{when}\:\mathrm{x}\:\mathrm{part}\:\mathrm{of}\:\mathrm{chain}\:\mathrm{has}\:\mathrm{already}\:\mathrm{rested} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{table}. \\ $$

Question Number 21722    Answers: 1   Comments: 0

Question Number 21721    Answers: 1   Comments: 0

∫_0 ^(π/2) sin^2 xcos^3 xdx

$$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} {sin}^{\mathrm{2}} {xcos}^{\mathrm{3}} {xdx} \\ $$

Question Number 21720    Answers: 1   Comments: 0

∫sin^5 θdθ

$$\int{sin}^{\mathrm{5}} \theta{d}\theta \\ $$

Question Number 21713    Answers: 0   Comments: 7

A constant force F = 20 N acts on a block of mass 2 kg which is connected to two blocks of masses m_1 = 1 kg and m_2 = 2 kg. Calculate the accelerations produced in all the three blocks. Assume pulleys are frictionless and weightless.

$$\mathrm{A}\:\mathrm{constant}\:\mathrm{force}\:{F}\:=\:\mathrm{20}\:\mathrm{N}\:\mathrm{acts}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{block}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{2}\:\mathrm{kg}\:\mathrm{which}\:\mathrm{is}\:\mathrm{connected}\:\mathrm{to} \\ $$$$\mathrm{two}\:\mathrm{blocks}\:\mathrm{of}\:\mathrm{masses}\:{m}_{\mathrm{1}} \:=\:\mathrm{1}\:\mathrm{kg}\:\mathrm{and} \\ $$$${m}_{\mathrm{2}} \:=\:\mathrm{2}\:\mathrm{kg}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{accelerations} \\ $$$$\mathrm{produced}\:\mathrm{in}\:\mathrm{all}\:\mathrm{the}\:\mathrm{three}\:\mathrm{blocks}.\:\mathrm{Assume} \\ $$$$\mathrm{pulleys}\:\mathrm{are}\:\mathrm{frictionless}\:\mathrm{and}\:\mathrm{weightless}. \\ $$

Question Number 21707    Answers: 0   Comments: 3

∫_(π/6) ^(π/3) (1/2)cot^2 2θdθ

$$\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \frac{\mathrm{1}}{\mathrm{2}}{cot}^{\mathrm{2}} \mathrm{2}\theta{d}\theta \\ $$

Question Number 21702    Answers: 0   Comments: 1

∫_(π/6) ^(π/3) 1/2cot^2 2θdθ

$$\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \mathrm{1}/\mathrm{2}{cot}^{\mathrm{2}} \mathrm{2}\theta{d}\theta \\ $$

Question Number 21701    Answers: 2   Comments: 1

∫2cot^2 2t

$$\int\mathrm{2}{cot}^{\mathrm{2}} \mathrm{2}{t} \\ $$

Question Number 21686    Answers: 0   Comments: 0

I have 6 friends and during a vacation I met them during several dinners. I found that I dined with all the 6 exactly on 1 day; with every 5 of them on 2 days; with every 4 of them on 3 days; with every 3 of them on 4 days; with every 2 of them on 5 days. Further every friend was present at 7 dinners and every friend was absent at 7 dinners. How many dinners did I have alone?

$$\mathrm{I}\:\mathrm{have}\:\mathrm{6}\:\mathrm{friends}\:\mathrm{and}\:\mathrm{during}\:\mathrm{a}\:\mathrm{vacation} \\ $$$$\mathrm{I}\:\mathrm{met}\:\mathrm{them}\:\mathrm{during}\:\mathrm{several}\:\mathrm{dinners}.\:\mathrm{I} \\ $$$$\mathrm{found}\:\mathrm{that}\:\mathrm{I}\:\mathrm{dined}\:\mathrm{with}\:\mathrm{all}\:\mathrm{the}\:\mathrm{6}\:\mathrm{exactly} \\ $$$$\mathrm{on}\:\mathrm{1}\:\mathrm{day};\:\mathrm{with}\:\mathrm{every}\:\mathrm{5}\:\mathrm{of}\:\mathrm{them}\:\mathrm{on}\:\mathrm{2}\:\mathrm{days}; \\ $$$$\mathrm{with}\:\mathrm{every}\:\mathrm{4}\:\mathrm{of}\:\mathrm{them}\:\mathrm{on}\:\mathrm{3}\:\mathrm{days};\:\mathrm{with} \\ $$$$\mathrm{every}\:\mathrm{3}\:\mathrm{of}\:\mathrm{them}\:\mathrm{on}\:\mathrm{4}\:\mathrm{days};\:\mathrm{with}\:\mathrm{every}\:\mathrm{2} \\ $$$$\mathrm{of}\:\mathrm{them}\:\mathrm{on}\:\mathrm{5}\:\mathrm{days}.\:\mathrm{Further}\:\mathrm{every}\:\mathrm{friend} \\ $$$$\mathrm{was}\:\mathrm{present}\:\mathrm{at}\:\mathrm{7}\:\mathrm{dinners}\:\mathrm{and}\:\mathrm{every} \\ $$$$\mathrm{friend}\:\mathrm{was}\:\mathrm{absent}\:\mathrm{at}\:\mathrm{7}\:\mathrm{dinners}.\:\mathrm{How} \\ $$$$\mathrm{many}\:\mathrm{dinners}\:\mathrm{did}\:\mathrm{I}\:\mathrm{have}\:\mathrm{alone}? \\ $$

Question Number 21685    Answers: 0   Comments: 0

In a group of ten persons, each person is asked to write the sum of the ages of all the other 9 persons. If all the ten sums form the 9-element set {82, 83, 84, 85, 87, 90, 91, 92} find the individual ages of the persons (assuming them to be whole numbers of years).

$$\mathrm{In}\:\mathrm{a}\:\mathrm{group}\:\mathrm{of}\:\mathrm{ten}\:\mathrm{persons},\:\mathrm{each}\:\mathrm{person} \\ $$$$\mathrm{is}\:\mathrm{asked}\:\mathrm{to}\:\mathrm{write}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ages}\:\mathrm{of} \\ $$$$\mathrm{all}\:\mathrm{the}\:\mathrm{other}\:\mathrm{9}\:\mathrm{persons}.\:\mathrm{If}\:\mathrm{all}\:\mathrm{the}\:\mathrm{ten} \\ $$$$\mathrm{sums}\:\mathrm{form}\:\mathrm{the}\:\mathrm{9}-\mathrm{element}\:\mathrm{set}\:\left\{\mathrm{82},\:\mathrm{83},\:\mathrm{84},\right. \\ $$$$\left.\mathrm{85},\:\mathrm{87},\:\mathrm{90},\:\mathrm{91},\:\mathrm{92}\right\}\:\mathrm{find}\:\mathrm{the}\:\mathrm{individual} \\ $$$$\mathrm{ages}\:\mathrm{of}\:\mathrm{the}\:\mathrm{persons}\:\left(\mathrm{assuming}\:\mathrm{them}\:\mathrm{to}\right. \\ $$$$\left.\mathrm{be}\:\mathrm{whole}\:\mathrm{numbers}\:\mathrm{of}\:\mathrm{years}\right). \\ $$

Question Number 21683    Answers: 1   Comments: 2

Suppose A_1 A_2 ...A_(20) is a 20-sided regular polygon. How many non-isosceles (scalene) triangles can be formed whose vertices are among the vertices of the polygon but whose sides are not the sides of the polygon?

$$\mathrm{Suppose}\:{A}_{\mathrm{1}} {A}_{\mathrm{2}} ...{A}_{\mathrm{20}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{20}-\mathrm{sided}\:\mathrm{regular} \\ $$$$\mathrm{polygon}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{non}-\mathrm{isosceles} \\ $$$$\left(\mathrm{scalene}\right)\:\mathrm{triangles}\:\mathrm{can}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{whose} \\ $$$$\mathrm{vertices}\:\mathrm{are}\:\mathrm{among}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{polygon}\:\mathrm{but}\:\mathrm{whose}\:\mathrm{sides}\:\mathrm{are}\:\mathrm{not}\:\mathrm{the} \\ $$$$\mathrm{sides}\:\mathrm{of}\:\mathrm{the}\:\mathrm{polygon}? \\ $$

Question Number 21682    Answers: 1   Comments: 0

Prove that the ten′s digit of any power of 3 is even. [e.g. the ten′s digit of 3^6 = 729 is 2].

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{ten}'\mathrm{s}\:\mathrm{digit}\:\mathrm{of}\:\mathrm{any}\:\mathrm{power} \\ $$$$\mathrm{of}\:\mathrm{3}\:\mathrm{is}\:\mathrm{even}.\:\left[\mathrm{e}.\mathrm{g}.\:\mathrm{the}\:\mathrm{ten}'\mathrm{s}\:\mathrm{digit}\:\mathrm{of}\:\mathrm{3}^{\mathrm{6}} \:=\right. \\ $$$$\left.\mathrm{729}\:\mathrm{is}\:\mathrm{2}\right]. \\ $$

Question Number 21670    Answers: 1   Comments: 1

The block of mass 2 kg and 3 kg are placed one over the other. The contact surfaces are rough with coefficient of friction μ_1 = 0.2, μ_2 = 0.06. A force F = (1/2)t N (where t is in second) is applied on upper block in the direction. (Given that g = 10 m/s^2 ) 1. The relative slipping between the blocks occurs at t = 2. Friction force acting between the two blocks at t = 8 s 3. The acceleration time graph for 3 kg block is

$$\mathrm{The}\:\mathrm{block}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{2}\:\mathrm{kg}\:\mathrm{and}\:\mathrm{3}\:\mathrm{kg}\:\mathrm{are} \\ $$$$\mathrm{placed}\:\mathrm{one}\:\mathrm{over}\:\mathrm{the}\:\mathrm{other}.\:\mathrm{The}\:\mathrm{contact} \\ $$$$\mathrm{surfaces}\:\mathrm{are}\:\mathrm{rough}\:\mathrm{with}\:\mathrm{coefficient}\:\mathrm{of} \\ $$$$\mathrm{friction}\:\mu_{\mathrm{1}} \:=\:\mathrm{0}.\mathrm{2},\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\mathrm{06}.\:\mathrm{A}\:\mathrm{force}\:{F}\:= \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{t}\:\mathrm{N}\:\left(\mathrm{where}\:{t}\:\mathrm{is}\:\mathrm{in}\:\mathrm{second}\right)\:\mathrm{is}\:\mathrm{applied} \\ $$$$\mathrm{on}\:\mathrm{upper}\:\mathrm{block}\:\mathrm{in}\:\mathrm{the}\:\mathrm{direction}.\:\left(\mathrm{Given}\right. \\ $$$$\left.\mathrm{that}\:{g}\:=\:\mathrm{10}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right) \\ $$$$\mathrm{1}.\:\mathrm{The}\:\mathrm{relative}\:\mathrm{slipping}\:\mathrm{between}\:\mathrm{the} \\ $$$$\mathrm{blocks}\:\mathrm{occurs}\:\mathrm{at}\:{t}\:= \\ $$$$\mathrm{2}.\:\mathrm{Friction}\:\mathrm{force}\:\mathrm{acting}\:\mathrm{between}\:\mathrm{the}\:\mathrm{two} \\ $$$$\mathrm{blocks}\:\mathrm{at}\:{t}\:=\:\mathrm{8}\:\mathrm{s} \\ $$$$\mathrm{3}.\:\mathrm{The}\:\mathrm{acceleration}\:\mathrm{time}\:\mathrm{graph}\:\mathrm{for}\:\mathrm{3}\:\mathrm{kg} \\ $$$$\mathrm{block}\:\mathrm{is} \\ $$

Question Number 21662    Answers: 1   Comments: 0

Question Number 21661    Answers: 0   Comments: 2

Question Number 21679    Answers: 1   Comments: 0

∫((secθ dθ)/(1−secθ))

$$\int\frac{\mathrm{sec}\theta\:\mathrm{d}\theta}{\mathrm{1}−\mathrm{sec}\theta} \\ $$

Question Number 21656    Answers: 0   Comments: 4

Let A(x) is a cubic polynomial and B(x) = (x −1)(x − 2)(x − 3) Find how many C(x) so that B(C(x)) = B(x) . A(x)

$$\mathrm{Let}\:{A}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{cubic}\:\mathrm{polynomial}\:\mathrm{and}\:{B}\left({x}\right)\:=\:\left({x}\:−\mathrm{1}\right)\left({x}\:−\:\mathrm{2}\right)\left({x}\:−\:\mathrm{3}\right) \\ $$$$\mathrm{Find}\:\mathrm{how}\:\mathrm{many}\:{C}\left({x}\right)\:\mathrm{so}\:\mathrm{that} \\ $$$${B}\left({C}\left({x}\right)\right)\:=\:{B}\left({x}\right)\:.\:{A}\left({x}\right) \\ $$

Question Number 21655    Answers: 1   Comments: 0

(((2017)),(( 0)) ) + (((2017)),(( 2)) ) + (((2017)),(( 4)) ) + (((2017)),(( 6)) ) + ... + (((2017)),((2016)) ) is equal to ...

$$\begin{pmatrix}{\mathrm{2017}}\\{\:\:\:\:\mathrm{0}}\end{pmatrix}\:+\:\begin{pmatrix}{\mathrm{2017}}\\{\:\:\:\:\mathrm{2}}\end{pmatrix}\:+\:\begin{pmatrix}{\mathrm{2017}}\\{\:\:\:\:\mathrm{4}}\end{pmatrix}\:+\:\begin{pmatrix}{\mathrm{2017}}\\{\:\:\:\:\mathrm{6}}\end{pmatrix}\:+\:...\:+\:\begin{pmatrix}{\mathrm{2017}}\\{\mathrm{2016}}\end{pmatrix} \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:... \\ $$

Question Number 21654    Answers: 0   Comments: 0

Find the minimum value of Q that satisfy: ∣xy(x^2 − y^2 ) + yz(y^2 − z^2 ) + zx(z^2 − x^2 )∣ ≤ Q(x^2 + y^2 + z^2 )^2

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:{Q}\:\mathrm{that}\:\mathrm{satisfy}: \\ $$$$\mid{xy}\left({x}^{\mathrm{2}} \:−\:{y}^{\mathrm{2}} \right)\:+\:{yz}\left({y}^{\mathrm{2}} \:−\:{z}^{\mathrm{2}} \right)\:+\:{zx}\left({z}^{\mathrm{2}} \:−\:{x}^{\mathrm{2}} \right)\mid\:\leqslant\:{Q}\left({x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$

Question Number 21653    Answers: 0   Comments: 0

Find all pair of solutions (x,y) that satisfy the equation: ((7x^2 − 13xy + 7y^2 ))^(1/3) = ∣x − y∣ + 1

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{solutions}\:\left({x},{y}\right)\:\mathrm{that}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{7}{x}^{\mathrm{2}} \:−\:\mathrm{13}{xy}\:+\:\mathrm{7}{y}^{\mathrm{2}} }\:=\:\mid{x}\:−\:{y}\mid\:+\:\mathrm{1} \\ $$

Question Number 21651    Answers: 0   Comments: 4

How many four-digit numbers are there whose decimal notation contains not more than two distinct digits?

$${How}\:{many}\:{four}-{digit}\:{numbers}\:{are} \\ $$$${there}\:{whose}\:{decimal}\:{notation}\:{contains} \\ $$$${not}\:{more}\:{than}\:{two}\:{distinct}\:{digits}? \\ $$

Question Number 21650    Answers: 0   Comments: 0

The three distinct successive terms of an A.P are the first,second and fourth terms of a G.P. If the sum to infinity of a G.P is 3+(√5) , find the first term.

$${The}\:{three}\:{distinct}\:{successive}\:{terms}\:{of}\:{an}\:{A}.{P}\:{are} \\ $$$${the}\:{first},{second}\:{and}\:{fourth}\:{terms}\:{of}\:{a}\:{G}.{P}.\:{If}\:{the}\: \\ $$$${sum}\:{to}\:{infinity}\:{of}\:{a}\:{G}.{P}\:{is}\:\mathrm{3}+\sqrt{\mathrm{5}}\:,\:{find}\: \\ $$$${the}\:{first}\:{term}. \\ $$$$ \\ $$

Question Number 21680    Answers: 1   Comments: 0

∫(√(secθ)) dθ

$$\int\sqrt{\mathrm{sec}\theta}\:\mathrm{d}\theta \\ $$

Question Number 21634    Answers: 1   Comments: 0

∫3tan2t

$$\int\mathrm{3}{tan}\mathrm{2}{t} \\ $$

Question Number 21708    Answers: 1   Comments: 0

∫_0 ^(0.5) 2tan^2 2tdt

$$\int_{\mathrm{0}} ^{\mathrm{0}.\mathrm{5}} \mathrm{2}{tan}^{\mathrm{2}} \mathrm{2}{tdt} \\ $$

  Pg 1871      Pg 1872      Pg 1873      Pg 1874      Pg 1875      Pg 1876      Pg 1877      Pg 1878      Pg 1879      Pg 1880   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com