Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1875

Question Number 22059    Answers: 1   Comments: 0

A flywheel whose diameter is 1.5m decrease uniformly from 240rad/min until it came to rest 10s. Find the number of revolution made.

$$\mathrm{A}\:\mathrm{flywheel}\:\mathrm{whose}\:\mathrm{diameter}\:\mathrm{is}\:\mathrm{1}.\mathrm{5m}\:\mathrm{decrease}\:\mathrm{uniformly}\:\mathrm{from}\:\mathrm{240rad}/\mathrm{min} \\ $$$$\mathrm{until}\:\mathrm{it}\:\mathrm{came}\:\mathrm{to}\:\mathrm{rest}\:\mathrm{10s}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{revolution}\:\mathrm{made}. \\ $$

Question Number 22058    Answers: 1   Comments: 0

Two balls of mass 500g and 750g moving with 15m/s and 10m/s towards each other collides. Find the velocities of the ball after collision, if the coefficient of restitution is 0.8

$$\mathrm{Two}\:\mathrm{balls}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{500g}\:\mathrm{and}\:\mathrm{750g}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{15m}/\mathrm{s}\:\mathrm{and} \\ $$$$\mathrm{10m}/\mathrm{s}\:\mathrm{towards}\:\mathrm{each}\:\mathrm{other}\:\mathrm{collides}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{velocities}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{after} \\ $$$$\mathrm{collision},\:\mathrm{if}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{restitution}\:\mathrm{is}\:\mathrm{0}.\mathrm{8} \\ $$

Question Number 22057    Answers: 0   Comments: 0

∫f(x)dx=((d/dx))^2 f(x)=???

$$\int{f}\left({x}\right){dx}=\left(\frac{{d}}{{dx}}\right)^{\mathrm{2}} \\ $$$${f}\left({x}\right)=??? \\ $$

Question Number 22055    Answers: 0   Comments: 1

Question Number 22052    Answers: 0   Comments: 2

A hockey player is moving northward and suddenly turns westward with the same speed to avoid an opponent. The force that acts on the player is (a) frictional force along westward (b) muscle force along southward (c) frictional force along south-west (d) muscle force along south-west

$$\mathrm{A}\:\mathrm{hockey}\:\mathrm{player}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{northward} \\ $$$$\mathrm{and}\:\mathrm{suddenly}\:\mathrm{turns}\:\mathrm{westward}\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{speed}\:\mathrm{to}\:\mathrm{avoid}\:\mathrm{an}\:\mathrm{opponent}. \\ $$$$\mathrm{The}\:\mathrm{force}\:\mathrm{that}\:\mathrm{acts}\:\mathrm{on}\:\mathrm{the}\:\mathrm{player}\:\mathrm{is} \\ $$$$\left({a}\right)\:\mathrm{frictional}\:\mathrm{force}\:\mathrm{along}\:\mathrm{westward} \\ $$$$\left({b}\right)\:\mathrm{muscle}\:\mathrm{force}\:\mathrm{along}\:\mathrm{southward} \\ $$$$\left({c}\right)\:\mathrm{frictional}\:\mathrm{force}\:\mathrm{along}\:\mathrm{south}-\mathrm{west} \\ $$$$\left({d}\right)\:\mathrm{muscle}\:\mathrm{force}\:\mathrm{along}\:\mathrm{south}-\mathrm{west} \\ $$

Question Number 22047    Answers: 2   Comments: 1

If x > 0 and the 4^(th) term in the expansion of (2 + (3/8)x)^(10) has maximum value then find the range of x.

$$\mathrm{If}\:{x}\:>\:\mathrm{0}\:\mathrm{and}\:\mathrm{the}\:\mathrm{4}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion} \\ $$$$\mathrm{of}\:\left(\mathrm{2}\:+\:\frac{\mathrm{3}}{\mathrm{8}}{x}\right)^{\mathrm{10}} \:\mathrm{has}\:\mathrm{maximum}\:\mathrm{value} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{x}. \\ $$

Question Number 22050    Answers: 0   Comments: 0

Calculate the energy emitted when electrons of 1 g atom of hydrogen undergo transition giving the spectral line of lowest energy in the visible region of its atomic spectrum (R_H = 1.1 × 10^7 m^(−1) , c = 3 × 10^8 ms^(−1) , h = 6.62 × 10^(−34) Js)

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{energy}\:\mathrm{emitted}\:\mathrm{when} \\ $$$$\mathrm{electrons}\:\mathrm{of}\:\mathrm{1}\:\mathrm{g}\:\mathrm{atom}\:\mathrm{of}\:\mathrm{hydrogen} \\ $$$$\mathrm{undergo}\:\mathrm{transition}\:\mathrm{giving}\:\mathrm{the}\:\mathrm{spectral} \\ $$$$\mathrm{line}\:\mathrm{of}\:\mathrm{lowest}\:\mathrm{energy}\:\mathrm{in}\:\mathrm{the}\:\mathrm{visible} \\ $$$$\mathrm{region}\:\mathrm{of}\:\mathrm{its}\:\mathrm{atomic}\:\mathrm{spectrum} \\ $$$$\left(\mathrm{R}_{\mathrm{H}} \:=\:\mathrm{1}.\mathrm{1}\:×\:\mathrm{10}^{\mathrm{7}} \:\mathrm{m}^{−\mathrm{1}} ,\:{c}\:=\:\mathrm{3}\:×\:\mathrm{10}^{\mathrm{8}} \:{ms}^{−\mathrm{1}} ,\right. \\ $$$$\left.{h}\:=\:\mathrm{6}.\mathrm{62}\:×\:\mathrm{10}^{−\mathrm{34}} \:\mathrm{Js}\right) \\ $$

Question Number 22044    Answers: 1   Comments: 0

Let A = {1, 2, 3, ....., n}, if a_i is the minimum element of the set A; (where A; denotes the subset of A containing exactly three elements) and X denotes the set of A_i ′s, then evaluate Σ_(A_i ∈X) a.

$$\mathrm{Let}\:{A}\:=\:\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:.....,\:{n}\right\},\:\mathrm{if}\:{a}_{{i}} \:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{minimum}\:\mathrm{element}\:\mathrm{of}\:\mathrm{the}\:\mathrm{set}\:{A};\:\left(\mathrm{where}\right. \\ $$$${A};\:\mathrm{denotes}\:\mathrm{the}\:\mathrm{subset}\:\mathrm{of}\:{A}\:\mathrm{containing} \\ $$$$\left.\mathrm{exactly}\:\mathrm{three}\:\mathrm{elements}\right)\:\mathrm{and}\:{X}\:\mathrm{denotes} \\ $$$$\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:{A}_{{i}} '\mathrm{s},\:\mathrm{then}\:\mathrm{evaluate}\:\underset{{A}_{{i}} \in{X}} {\sum}{a}. \\ $$

Question Number 22043    Answers: 1   Comments: 0

In how many ways we can choose 3 squares on a chess board such that one of the squares has its two sides common to other two squares?

$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{we}\:\mathrm{can}\:\mathrm{choose}\:\mathrm{3} \\ $$$$\mathrm{squares}\:\mathrm{on}\:\mathrm{a}\:\mathrm{chess}\:\mathrm{board}\:\mathrm{such}\:\mathrm{that}\:\mathrm{one} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{squares}\:\mathrm{has}\:\mathrm{its}\:\mathrm{two}\:\mathrm{sides}\:\mathrm{common} \\ $$$$\mathrm{to}\:\mathrm{other}\:\mathrm{two}\:\mathrm{squares}? \\ $$

Question Number 22042    Answers: 1   Comments: 0

Determine the number of ordered pairs of positive integers (a, b) such that the least common multiple of a and b is 2^3 ∙5^7 ∙11^(13) .

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ordered} \\ $$$$\mathrm{pairs}\:\mathrm{of}\:\mathrm{positive}\:\mathrm{integers}\:\left({a},\:{b}\right)\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{least}\:\mathrm{common}\:\mathrm{multiple}\:\mathrm{of}\:{a} \\ $$$$\mathrm{and}\:{b}\:\mathrm{is}\:\mathrm{2}^{\mathrm{3}} \centerdot\mathrm{5}^{\mathrm{7}} \centerdot\mathrm{11}^{\mathrm{13}} . \\ $$

Question Number 22041    Answers: 0   Comments: 0

On the modified chess board 10 × 10, Amit and Suresh two persons which start moving towards each other. Each person moving with same constant speed. Amit can move only to the right and upwards along the lines while Suresh can move only to the left or downwards along the lines of the chess boards. The total number of ways in which Amit and Suresh can meet at same point during their trip.

$$\mathrm{On}\:\mathrm{the}\:\mathrm{modified}\:\mathrm{chess}\:\mathrm{board}\:\mathrm{10}\:×\:\mathrm{10}, \\ $$$$\mathrm{Amit}\:\mathrm{and}\:\mathrm{Suresh}\:\mathrm{two}\:\mathrm{persons}\:\mathrm{which} \\ $$$$\mathrm{start}\:\mathrm{moving}\:\mathrm{towards}\:\mathrm{each}\:\mathrm{other}.\:\mathrm{Each} \\ $$$$\mathrm{person}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{same}\:\mathrm{constant} \\ $$$$\mathrm{speed}.\:\mathrm{Amit}\:\mathrm{can}\:\mathrm{move}\:\mathrm{only}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{right}\:\mathrm{and}\:\mathrm{upwards}\:\mathrm{along}\:\mathrm{the}\:\mathrm{lines} \\ $$$$\mathrm{while}\:\mathrm{Suresh}\:\mathrm{can}\:\mathrm{move}\:\mathrm{only}\:\mathrm{to}\:\mathrm{the}\:\mathrm{left} \\ $$$$\mathrm{or}\:\mathrm{downwards}\:\mathrm{along}\:\mathrm{the}\:\mathrm{lines}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{chess}\:\mathrm{boards}.\:\mathrm{The}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{ways}\:\mathrm{in}\:\mathrm{which}\:\mathrm{Amit}\:\mathrm{and}\:\mathrm{Suresh}\:\mathrm{can} \\ $$$$\mathrm{meet}\:\mathrm{at}\:\mathrm{same}\:\mathrm{point}\:\mathrm{during}\:\mathrm{their}\:\mathrm{trip}. \\ $$

Question Number 22040    Answers: 0   Comments: 4

The total number of non-similar triangles which can be formed such that all the angles of the triangle are integers is

$$\mathrm{The}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{non}-\mathrm{similar} \\ $$$$\mathrm{triangles}\:\mathrm{which}\:\mathrm{can}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{all}\:\mathrm{the}\:\mathrm{angles}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{are} \\ $$$$\mathrm{integers}\:\mathrm{is} \\ $$

Question Number 22038    Answers: 0   Comments: 1

The symbols +, +, ×, ×, ★, •, are placed in the squares of the adjoining figure. The number of ways of placing symbols so that no row remains empty is

$$\mathrm{The}\:\mathrm{symbols}\:+,\:+,\:×,\:×,\:\bigstar,\:\bullet,\:\mathrm{are} \\ $$$$\mathrm{placed}\:\mathrm{in}\:\mathrm{the}\:\mathrm{squares}\:\mathrm{of}\:\mathrm{the}\:\mathrm{adjoining} \\ $$$$\mathrm{figure}.\:\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{of}\:\mathrm{placing} \\ $$$$\mathrm{symbols}\:\mathrm{so}\:\mathrm{that}\:\mathrm{no}\:\mathrm{row}\:\mathrm{remains}\:\mathrm{empty} \\ $$$$\mathrm{is} \\ $$

Question Number 22037    Answers: 0   Comments: 2

How many 5-digit numbers from the digits {0, 1, ....., 9} have? (i) Strictly increasing digits (ii) Strictly increasing or decreasing digits (iii) Increasing digits (iv) Increasing or decreasing digits

$$\mathrm{How}\:\mathrm{many}\:\mathrm{5}-\mathrm{digit}\:\mathrm{numbers}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{digits}\:\left\{\mathrm{0},\:\mathrm{1},\:.....,\:\mathrm{9}\right\}\:\mathrm{have}? \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Strictly}\:\mathrm{increasing}\:\mathrm{digits} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Strictly}\:\mathrm{increasing}\:\mathrm{or}\:\mathrm{decreasing} \\ $$$$\mathrm{digits} \\ $$$$\left(\mathrm{iii}\right)\:\mathrm{Increasing}\:\mathrm{digits} \\ $$$$\left(\mathrm{iv}\right)\:\mathrm{Increasing}\:\mathrm{or}\:\mathrm{decreasing}\:\mathrm{digits} \\ $$

Question Number 22036    Answers: 0   Comments: 1

2n objects of each of three kinds are given to two persons, so that each person gets 3n objects. Prove that this can be done in 3n^2 + 3n + 1 ways.

$$\mathrm{2}{n}\:\mathrm{objects}\:\mathrm{of}\:\mathrm{each}\:\mathrm{of}\:\mathrm{three}\:\mathrm{kinds}\:\mathrm{are} \\ $$$$\mathrm{given}\:\mathrm{to}\:\mathrm{two}\:\mathrm{persons},\:\mathrm{so}\:\mathrm{that}\:\mathrm{each} \\ $$$$\mathrm{person}\:\mathrm{gets}\:\mathrm{3}{n}\:\mathrm{objects}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{done}\:\mathrm{in}\:\mathrm{3}{n}^{\mathrm{2}} \:+\:\mathrm{3}{n}\:+\:\mathrm{1}\:\mathrm{ways}. \\ $$

Question Number 22035    Answers: 0   Comments: 0

The number of five digits can be made with the digits 1, 2, 3 each of which can be used atmost thrice in a number is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{five}\:\mathrm{digits}\:\mathrm{can}\:\mathrm{be}\:\mathrm{made} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{1},\:\mathrm{2},\:\mathrm{3}\:\mathrm{each}\:\mathrm{of}\:\mathrm{which}\:\mathrm{can} \\ $$$$\mathrm{be}\:\mathrm{used}\:\mathrm{atmost}\:\mathrm{thrice}\:\mathrm{in}\:\mathrm{a}\:\mathrm{number}\:\mathrm{is} \\ $$

Question Number 22023    Answers: 1   Comments: 3

Question Number 22020    Answers: 0   Comments: 0

The line of action of the resultant of two like parallel forces shifts by one fourth of the distance between the forces when the two forces are interchanged. The ratio of the two forces is

$$\mathrm{The}\:\mathrm{line}\:\mathrm{of}\:\mathrm{action}\:\mathrm{of}\:\mathrm{the}\:\mathrm{resultant}\:\mathrm{of} \\ $$$$\mathrm{two}\:\mathrm{like}\:\mathrm{parallel}\:\mathrm{forces}\:\mathrm{shifts}\:\mathrm{by}\:\mathrm{one} \\ $$$$\mathrm{fourth}\:\mathrm{of}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{the} \\ $$$$\mathrm{forces}\:\mathrm{when}\:\mathrm{the}\:\mathrm{two}\:\mathrm{forces}\:\mathrm{are} \\ $$$$\mathrm{interchanged}.\:\mathrm{The}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two} \\ $$$$\mathrm{forces}\:\mathrm{is} \\ $$

Question Number 22014    Answers: 0   Comments: 0

The number of solution(s) of the equation ∣log_e (∣x∣)∣ + ∣x∣ = 10 is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solution}\left(\mathrm{s}\right)\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mid\mathrm{log}_{{e}} \left(\mid{x}\mid\right)\mid\:+\:\mid{x}\mid\:=\:\mathrm{10}\:\mathrm{is} \\ $$

Question Number 22001    Answers: 1   Comments: 0

if determinant (((z−(z/4))),())=2 then value of determinant ((z),())

$${if}\:\begin{vmatrix}{{z}−\frac{{z}}{\mathrm{4}}}\\{}\end{vmatrix}=\mathrm{2}\:{then}\:{value}\:{of}\:\begin{vmatrix}{{z}}\\{}\end{vmatrix} \\ $$

Question Number 21994    Answers: 0   Comments: 1

Suppose N is an n-digit positive integer such that (a) all the n-digits are distinct; and (b) the sum of any three consecutive digits is divisible by 5. Prove that n is at most 6. Further, show that starting with any digit one can find a six-digit number with these properties.

$$\mathrm{Suppose}\:{N}\:\mathrm{is}\:\mathrm{an}\:{n}-\mathrm{digit}\:\mathrm{positive} \\ $$$$\mathrm{integer}\:\mathrm{such}\:\mathrm{that} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{all}\:\mathrm{the}\:{n}-\mathrm{digits}\:\mathrm{are}\:\mathrm{distinct};\:\mathrm{and} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{any}\:\mathrm{three}\:\mathrm{consecutive} \\ $$$$\mathrm{digits}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{5}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:{n}\:\mathrm{is}\:\mathrm{at}\:\mathrm{most}\:\mathrm{6}.\:\mathrm{Further}, \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{starting}\:\mathrm{with}\:\mathrm{any}\:\mathrm{digit}\:\mathrm{one} \\ $$$$\mathrm{can}\:\mathrm{find}\:\mathrm{a}\:\mathrm{six}-\mathrm{digit}\:\mathrm{number}\:\mathrm{with}\:\mathrm{these} \\ $$$$\mathrm{properties}. \\ $$

Question Number 21990    Answers: 1   Comments: 1

i still search about a general and complete solution about this determine x in N where 7 divise 2^x +3^x note = it is just an exercise in secondary so dont go away... maybe we must use separation of cases methode....

$${i}\:{still}\:{search}\:{about}\:{a}\:{general}\:{and}\: \\ $$$${complete}\:{solution}\:{about}\:{this} \\ $$$${determine}\:{x}\:{in}\:{N}\:{where}\:\mathrm{7}\:{divise}\:\mathrm{2}^{{x}} +\mathrm{3}^{{x}} \\ $$$${note}\:=\:{it}\:{is}\:{just}\:{an}\:{exercise}\:{in}\:{secondary} \\ $$$${so}\:{dont}\:{go}\:{away}... \\ $$$${maybe}\:{we}\:{must}\:{use}\:{separation}\:{of}\:{cases} \\ $$$${methode}.... \\ $$

Question Number 21973    Answers: 1   Comments: 1

ΔABC with sides a, b, c ∈ Z and ∠A = 3∠B If its circumference is minimum, then find a, b, c

$$\Delta{ABC}\:\mathrm{with}\:\mathrm{sides}\:{a},\:{b},\:{c}\:\in\:\mathbb{Z}\:\mathrm{and}\:\angle{A}\:=\:\mathrm{3}\angle{B} \\ $$$$\mathrm{If}\:\mathrm{its}\:\mathrm{circumference}\:\mathrm{is}\:\mathrm{minimum},\:\mathrm{then} \\ $$$$\mathrm{find}\:{a},\:{b},\:{c} \\ $$

Question Number 21970    Answers: 1   Comments: 0

integrate ∫sec^3 xdx

$${integrate} \\ $$$$\int{sec}^{\mathrm{3}} {xdx} \\ $$

Question Number 21967    Answers: 1   Comments: 1

A block is tied with a thread of length l and moved in a horizontal circle on a rough table. Coefficient of friction between block and table is μ = 0.2. Find tan θ, where θ is the angle between acceleration and frictional force at the instant when speed of particle is v = (√(1.6lg))

$$\mathrm{A}\:\mathrm{block}\:\mathrm{is}\:\mathrm{tied}\:\mathrm{with}\:\mathrm{a}\:\mathrm{thread}\:\mathrm{of}\:\mathrm{length}\:{l} \\ $$$$\mathrm{and}\:\mathrm{moved}\:\mathrm{in}\:\mathrm{a}\:\mathrm{horizontal}\:\mathrm{circle}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{rough}\:\mathrm{table}.\:\mathrm{Coefficient}\:\mathrm{of}\:\mathrm{friction} \\ $$$$\mathrm{between}\:\mathrm{block}\:\mathrm{and}\:\mathrm{table}\:\mathrm{is}\:\mu\:=\:\mathrm{0}.\mathrm{2}. \\ $$$$\mathrm{Find}\:\mathrm{tan}\:\theta,\:\mathrm{where}\:\theta\:\mathrm{is}\:\mathrm{the}\:\mathrm{angle} \\ $$$$\mathrm{between}\:\mathrm{acceleration}\:\mathrm{and}\:\mathrm{frictional} \\ $$$$\mathrm{force}\:\mathrm{at}\:\mathrm{the}\:\mathrm{instant}\:\mathrm{when}\:\mathrm{speed}\:\mathrm{of} \\ $$$$\mathrm{particle}\:\mathrm{is}\:{v}\:=\:\sqrt{\mathrm{1}.\mathrm{6}{lg}} \\ $$

Question Number 21962    Answers: 0   Comments: 2

Let A be a set of 16 positive integers with the property that the product of any two distinct numbers of A will not exceed 1994. Show that there are two numbers a and b in A which are not relatively prime.

$$\mathrm{Let}\:{A}\:\mathrm{be}\:\mathrm{a}\:\mathrm{set}\:\mathrm{of}\:\mathrm{16}\:\mathrm{positive}\:\mathrm{integers} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{property}\:\mathrm{that}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of} \\ $$$$\mathrm{any}\:\mathrm{two}\:\mathrm{distinct}\:\mathrm{numbers}\:\mathrm{of}\:{A}\:\mathrm{will} \\ $$$$\mathrm{not}\:\mathrm{exceed}\:\mathrm{1994}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are} \\ $$$$\mathrm{two}\:\mathrm{numbers}\:{a}\:\mathrm{and}\:{b}\:\mathrm{in}\:{A}\:\mathrm{which}\:\mathrm{are} \\ $$$$\mathrm{not}\:\mathrm{relatively}\:\mathrm{prime}. \\ $$

  Pg 1870      Pg 1871      Pg 1872      Pg 1873      Pg 1874      Pg 1875      Pg 1876      Pg 1877      Pg 1878      Pg 1879   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com