Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1875

Question Number 21874    Answers: 2   Comments: 0

Find the remainder if 2^(2006) is divided by 17

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{if}\:\:\:\mathrm{2}^{\mathrm{2006}} \:\mathrm{is}\:\mathrm{divided}\:\mathrm{by}\:\:\mathrm{17} \\ $$

Question Number 21870    Answers: 1   Comments: 0

A wire of mass 9.8 × 10^(−3) kg per meter passes over a frictionless pulley fixed on the top of an inclined frictionless plane which makes an angle of 30° with the horizontal. Masses M_1 and M_2 are tied at the two ends of the wire. The mass M_1 rests on the plane and the mass M_2 hangs freely vertically downward. The whole system is in equilibrium. Now a transverse wave propagates along the wire with a velocity of 100 m/s. Find M_1 and M_2 (g = 9.8 m/s^2 ).

$$\mathrm{A}\:\mathrm{wire}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{9}.\mathrm{8}\:×\:\mathrm{10}^{−\mathrm{3}} \:\mathrm{kg}\:\mathrm{per}\:\mathrm{meter} \\ $$$$\mathrm{passes}\:\mathrm{over}\:\mathrm{a}\:\mathrm{frictionless}\:\mathrm{pulley}\:\mathrm{fixed} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{an}\:\mathrm{inclined}\:\mathrm{frictionless} \\ $$$$\mathrm{plane}\:\mathrm{which}\:\mathrm{makes}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{30}°\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{horizontal}.\:\mathrm{Masses}\:{M}_{\mathrm{1}} \:\mathrm{and}\:{M}_{\mathrm{2}} \:\mathrm{are} \\ $$$$\mathrm{tied}\:\mathrm{at}\:\mathrm{the}\:\mathrm{two}\:\mathrm{ends}\:\mathrm{of}\:\mathrm{the}\:\mathrm{wire}.\:\mathrm{The} \\ $$$$\mathrm{mass}\:{M}_{\mathrm{1}} \:\mathrm{rests}\:\mathrm{on}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{mass}\:{M}_{\mathrm{2}} \:\mathrm{hangs}\:\mathrm{freely}\:\mathrm{vertically} \\ $$$$\mathrm{downward}.\:\mathrm{The}\:\mathrm{whole}\:\mathrm{system}\:\mathrm{is}\:\mathrm{in} \\ $$$$\mathrm{equilibrium}.\:\mathrm{Now}\:\mathrm{a}\:\mathrm{transverse}\:\mathrm{wave} \\ $$$$\mathrm{propagates}\:\mathrm{along}\:\mathrm{the}\:\mathrm{wire}\:\mathrm{with}\:\mathrm{a} \\ $$$$\mathrm{velocity}\:\mathrm{of}\:\mathrm{100}\:\mathrm{m}/\mathrm{s}.\:\mathrm{Find}\:{M}_{\mathrm{1}} \:\mathrm{and}\:{M}_{\mathrm{2}} \\ $$$$\left({g}\:=\:\mathrm{9}.\mathrm{8}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right). \\ $$

Question Number 21840    Answers: 1   Comments: 0

A cone is placed inside a sphere. If volume of the cone is maximum, find the ratio of radius from the cone and sphere

$$\mathrm{A}\:\mathrm{cone}\:\mathrm{is}\:\mathrm{placed}\:\mathrm{inside}\:\mathrm{a}\:\mathrm{sphere}. \\ $$$$\mathrm{If}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cone}\:\mathrm{is}\:\mathrm{maximum}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{from}\:\mathrm{the}\:\mathrm{cone}\:\mathrm{and}\:\mathrm{sphere} \\ $$

Question Number 21837    Answers: 0   Comments: 4

Question Number 21825    Answers: 0   Comments: 2

Find the simplest form of Σ_(k = 1) ^n 2^k [sin^2 (((2kπ)/3)) + (1/4)]

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{simplest}\:\mathrm{form}\:\mathrm{of} \\ $$$$\underset{{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}} \left[\mathrm{sin}^{\mathrm{2}} \:\left(\frac{\mathrm{2}{k}\pi}{\mathrm{3}}\right)\:+\:\frac{\mathrm{1}}{\mathrm{4}}\right] \\ $$

Question Number 21964    Answers: 1   Comments: 0

Question Number 21965    Answers: 1   Comments: 0

integrate ∫sin^3 xdx

$${integrate} \\ $$$$\int{sin}^{\mathrm{3}} {xdx} \\ $$

Question Number 22051    Answers: 0   Comments: 3

I have recently seen a different notation for integration, written as: ∫dxf(x) e.g. ∫dx(x+1)^2 Is this the same as: ∫f(x)dx ⇒ =∫(x+1)^2 dx ???

$$\mathrm{I}\:\mathrm{have}\:\mathrm{recently}\:\mathrm{seen}\:\mathrm{a}\:\mathrm{different}\:\mathrm{notation} \\ $$$$\mathrm{for}\:\mathrm{integration},\:\mathrm{written}\:\mathrm{as}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int{dxf}\left({x}\right) \\ $$$${e}.{g}. \\ $$$$\:\:\:\:\:\:\int{dx}\left({x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\: \\ $$$$\mathrm{Is}\:\mathrm{this}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int{f}\left({x}\right){dx} \\ $$$$\Rightarrow\:\:\:\:=\int\left({x}+\mathrm{1}\right)^{\mathrm{2}} {dx} \\ $$$$??? \\ $$

Question Number 21819    Answers: 0   Comments: 3

Consider the situation shown in figure in which a block P of mass 2 kg is placed over a block Q of mass 4 kg. The combination of the blocks are placed on inclined plane of inclination 37° with horizontal. The coefficient of friction between Block Q and inclined plane is μ_2 and in between the two blocks is μ_1 . The system is released from rest, then when will be the frictional force acting between the block is zero? (p) μ_1 = 0.4; μ_2 = 0 (q) μ_1 = 0.8; μ_2 = 0.8 (r) μ_1 = 0.4; μ_2 = 0.5 (s) μ_1 = 0.5; μ_2 = 0.4 (t) μ_1 = 0; μ_2 = 0.4

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{situation}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{figure} \\ $$$$\mathrm{in}\:\mathrm{which}\:\mathrm{a}\:\mathrm{block}\:{P}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{2}\:\mathrm{kg}\:\mathrm{is}\:\mathrm{placed} \\ $$$$\mathrm{over}\:\mathrm{a}\:\mathrm{block}\:{Q}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{4}\:\mathrm{kg}.\:\mathrm{The} \\ $$$$\mathrm{combination}\:\mathrm{of}\:\mathrm{the}\:\mathrm{blocks}\:\mathrm{are}\:\mathrm{placed}\:\mathrm{on} \\ $$$$\mathrm{inclined}\:\mathrm{plane}\:\mathrm{of}\:\mathrm{inclination}\:\mathrm{37}°\:\mathrm{with} \\ $$$$\mathrm{horizontal}.\:\mathrm{The}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{friction} \\ $$$$\mathrm{between}\:\mathrm{Block}\:{Q}\:\mathrm{and}\:\mathrm{inclined}\:\mathrm{plane}\:\mathrm{is} \\ $$$$\mu_{\mathrm{2}} \:\mathrm{and}\:\mathrm{in}\:\mathrm{between}\:\mathrm{the}\:\mathrm{two}\:\mathrm{blocks}\:\mathrm{is}\:\mu_{\mathrm{1}} . \\ $$$$\mathrm{The}\:\mathrm{system}\:\mathrm{is}\:\mathrm{released}\:\mathrm{from}\:\mathrm{rest},\:\mathrm{then} \\ $$$$\mathrm{when}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{frictional}\:\mathrm{force} \\ $$$$\mathrm{acting}\:\mathrm{between}\:\mathrm{the}\:\mathrm{block}\:\mathrm{is}\:\mathrm{zero}? \\ $$$$\left(\mathrm{p}\right)\:\mu_{\mathrm{1}} \:=\:\mathrm{0}.\mathrm{4};\:\mu_{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\left(\mathrm{q}\right)\:\mu_{\mathrm{1}} \:=\:\mathrm{0}.\mathrm{8};\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\mathrm{8} \\ $$$$\left(\mathrm{r}\right)\:\mu_{\mathrm{1}} \:=\:\mathrm{0}.\mathrm{4};\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\mathrm{5} \\ $$$$\left(\mathrm{s}\right)\:\mu_{\mathrm{1}} \:=\:\mathrm{0}.\mathrm{5};\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\mathrm{4} \\ $$$$\left(\mathrm{t}\right)\:\mu_{\mathrm{1}} \:=\:\mathrm{0};\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\mathrm{4} \\ $$

Question Number 21867    Answers: 0   Comments: 0

The number of points in the cartesian plane with integral coordinates satisfying the inequalities ∣x∣ ≤ 4, ∣y∣ ≤ 4 and ∣x − y∣ ≤ 4 is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{points}\:\mathrm{in}\:\mathrm{the}\:\mathrm{cartesian} \\ $$$$\mathrm{plane}\:\mathrm{with}\:\mathrm{integral}\:\mathrm{coordinates} \\ $$$$\mathrm{satisfying}\:\mathrm{the}\:\mathrm{inequalities}\:\mid{x}\mid\:\leqslant\:\mathrm{4},\:\mid{y}\mid\:\leqslant \\ $$$$\mathrm{4}\:\mathrm{and}\:\mid{x}\:−\:{y}\mid\:\leqslant\:\mathrm{4}\:\mathrm{is} \\ $$

Question Number 21815    Answers: 0   Comments: 2

sin18^0 =

$${sin}\mathrm{18}^{\mathrm{0}} = \\ $$

Question Number 21813    Answers: 0   Comments: 0

x_1 +x_2 +x_3 =5 ways=5−1C_(3−1) =4C_2 =6

$${x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} =\mathrm{5} \\ $$$${ways}=\mathrm{5}−\mathrm{1}{C}_{\mathrm{3}−\mathrm{1}} =\mathrm{4}{C}_{\mathrm{2}} =\mathrm{6} \\ $$

Question Number 21811    Answers: 0   Comments: 1

a_1 =1, a_(n+1) =(a_n /(√(a_n +n+1))) Σ_(n=1) ^∞ a_n =?

$${a}_{\mathrm{1}} =\mathrm{1},\:{a}_{{n}+\mathrm{1}} =\frac{{a}_{{n}} }{\sqrt{{a}_{{n}} +{n}+\mathrm{1}}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{a}_{{n}} =? \\ $$

Question Number 21810    Answers: 1   Comments: 0

integrate ∫(x^2 /(√(1−x^2 )))dx

$${integrate} \\ $$$$\int\frac{{x}^{\mathrm{2}} }{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 21802    Answers: 1   Comments: 1

Five balls are to be placed in three boxes. Each can hold all the five balls. In how many different ways can we place the balls so that no box remains empty, if balls are different but boxes are identical?

$$\mathrm{Five}\:\mathrm{balls}\:\mathrm{are}\:\mathrm{to}\:\mathrm{be}\:\mathrm{placed}\:\mathrm{in}\:\mathrm{three} \\ $$$$\mathrm{boxes}.\:\mathrm{Each}\:\mathrm{can}\:\mathrm{hold}\:\mathrm{all}\:\mathrm{the}\:\mathrm{five}\:\mathrm{balls}. \\ $$$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{different}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{we} \\ $$$$\mathrm{place}\:\mathrm{the}\:\mathrm{balls}\:\mathrm{so}\:\mathrm{that}\:\mathrm{no}\:\mathrm{box}\:\mathrm{remains} \\ $$$$\mathrm{empty},\:\mathrm{if}\:\mathrm{balls}\:\mathrm{are}\:\mathrm{different}\:\mathrm{but}\:\mathrm{boxes} \\ $$$$\mathrm{are}\:\mathrm{identical}? \\ $$

Question Number 21801    Answers: 0   Comments: 0

There are n straight lines in a plane, no two of which are parallel and no three pass through the same point. Their point of intersection are joined. Then the number of fresh lines thus obtained is

$$\mathrm{There}\:\mathrm{are}\:{n}\:\mathrm{straight}\:\mathrm{lines}\:\mathrm{in}\:\mathrm{a}\:\mathrm{plane},\:\mathrm{no} \\ $$$$\mathrm{two}\:\mathrm{of}\:\mathrm{which}\:\mathrm{are}\:\mathrm{parallel}\:\mathrm{and}\:\mathrm{no}\:\mathrm{three} \\ $$$$\mathrm{pass}\:\mathrm{through}\:\mathrm{the}\:\mathrm{same}\:\mathrm{point}.\:\mathrm{Their} \\ $$$$\mathrm{point}\:\mathrm{of}\:\mathrm{intersection}\:\mathrm{are}\:\mathrm{joined}.\:\mathrm{Then} \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{fresh}\:\mathrm{lines}\:\mathrm{thus}\:\mathrm{obtained} \\ $$$$\mathrm{is} \\ $$

Question Number 21800    Answers: 0   Comments: 2

The number of integers which lie between 1 and 10^6 and which have sum of digits equal to 12 is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{integers}\:\mathrm{which}\:\mathrm{lie} \\ $$$$\mathrm{between}\:\mathrm{1}\:\mathrm{and}\:\mathrm{10}^{\mathrm{6}} \:\mathrm{and}\:\mathrm{which}\:\mathrm{have}\:\mathrm{sum} \\ $$$$\mathrm{of}\:\mathrm{digits}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{12}\:\mathrm{is} \\ $$

Question Number 21799    Answers: 0   Comments: 2

There are n white and n red balls marked 1, 2, 3, ....n. The number of ways we can arrange these balls in a row so that neighbouring balls are of different colours is

$$\mathrm{There}\:\mathrm{are}\:{n}\:\mathrm{white}\:\mathrm{and}\:{n}\:\mathrm{red}\:\mathrm{balls} \\ $$$$\mathrm{marked}\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:....{n}.\:\mathrm{The}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{ways}\:\mathrm{we}\:\mathrm{can}\:\mathrm{arrange}\:\mathrm{these}\:\mathrm{balls}\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{row}\:\mathrm{so}\:\mathrm{that}\:\mathrm{neighbouring}\:\mathrm{balls}\:\mathrm{are}\:\mathrm{of} \\ $$$$\mathrm{different}\:\mathrm{colours}\:\mathrm{is} \\ $$

Question Number 21795    Answers: 1   Comments: 3

help x∈N determine x where 7 divise 2^x +3^x

$${help} \\ $$$${x}\in{N} \\ $$$${determine}\:{x}\:{where}\:\mathrm{7}\:{divise}\:\mathrm{2}^{{x}} +\mathrm{3}^{{x}} \\ $$$$ \\ $$

Question Number 21793    Answers: 0   Comments: 6

A plank of mass 10 kg rests on a smooth horizontal surface. Two blocks A and B of masses m_A = 2 kg and m_B = 1 kg lies at a distance of 3 m on the plank. The friction coefficient between the blocks and plank are μ_A = 0.3 and μ_B = 0.1. Now a force F = 15 N is applied to the plank in horizontal direction. Find the times (in sec) after which block A collides with B.

$$\mathrm{A}\:\mathrm{plank}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{10}\:\mathrm{kg}\:\mathrm{rests}\:\mathrm{on}\:\mathrm{a}\:\mathrm{smooth} \\ $$$$\mathrm{horizontal}\:\mathrm{surface}.\:\mathrm{Two}\:\mathrm{blocks}\:\mathrm{A}\:\mathrm{and} \\ $$$$\mathrm{B}\:\mathrm{of}\:\mathrm{masses}\:\mathrm{m}_{\mathrm{A}} \:=\:\mathrm{2}\:\mathrm{kg}\:\mathrm{and}\:\mathrm{m}_{\mathrm{B}} \:=\:\mathrm{1}\:\mathrm{kg} \\ $$$$\mathrm{lies}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{3}\:\mathrm{m}\:\mathrm{on}\:\mathrm{the}\:\mathrm{plank}. \\ $$$$\mathrm{The}\:\mathrm{friction}\:\mathrm{coefficient}\:\mathrm{between}\:\mathrm{the} \\ $$$$\mathrm{blocks}\:\mathrm{and}\:\mathrm{plank}\:\mathrm{are}\:\mu_{\mathrm{A}} \:=\:\mathrm{0}.\mathrm{3}\:\mathrm{and}\:\mu_{\mathrm{B}} \:= \\ $$$$\mathrm{0}.\mathrm{1}.\:\mathrm{Now}\:\mathrm{a}\:\mathrm{force}\:\mathrm{F}\:=\:\mathrm{15}\:\mathrm{N}\:\mathrm{is}\:\mathrm{applied}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{plank}\:\mathrm{in}\:\mathrm{horizontal}\:\mathrm{direction}.\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{times}\:\left(\mathrm{in}\:\mathrm{sec}\right)\:\mathrm{after}\:\mathrm{which}\:\mathrm{block}\:\mathrm{A} \\ $$$$\mathrm{collides}\:\mathrm{with}\:\mathrm{B}. \\ $$

Question Number 24687    Answers: 1   Comments: 0

A particle starts from rest at t = 0 and moves with uniform acceleration. Then (1) In any time interval starting from t = 0 the space-average of the velocity is (4/3) times of time average velocity (2) If v = v_1 at t = t_1 and v = v_2 at t = t_2 then time average velocity between t_1 and t_2 is ((v_1 + v_2 )/2) (3) Distance travelled in successive equal time intervals are in proportion of 1 : 3 : 5 ... and so on (4) If v_1 , v_2 , v_3 denote the average velocities in three successive intervals of time t_1 , t_2 , t_3 then ((v_1 − v_2 )/(v_2 − v_3 )) = ((t_1 + t_2 )/(t_2 + t_3 ))

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{starts}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{at}\:{t}\:=\:\mathrm{0}\:\mathrm{and} \\ $$$$\mathrm{moves}\:\mathrm{with}\:\mathrm{uniform}\:\mathrm{acceleration}.\:\mathrm{Then} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{In}\:\mathrm{any}\:\mathrm{time}\:\mathrm{interval}\:\mathrm{starting}\:\mathrm{from} \\ $$$${t}\:=\:\mathrm{0}\:\mathrm{the}\:\mathrm{space}-\mathrm{average}\:\mathrm{of}\:\mathrm{the}\:\mathrm{velocity} \\ $$$$\mathrm{is}\:\frac{\mathrm{4}}{\mathrm{3}}\:\mathrm{times}\:\mathrm{of}\:\mathrm{time}\:\mathrm{average}\:\mathrm{velocity} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{If}\:{v}\:=\:{v}_{\mathrm{1}} \:\mathrm{at}\:{t}\:=\:{t}_{\mathrm{1}} \:\mathrm{and}\:{v}\:=\:{v}_{\mathrm{2}} \:\mathrm{at}\:{t}\:=\:{t}_{\mathrm{2}} \\ $$$$\mathrm{then}\:\mathrm{time}\:\mathrm{average}\:\mathrm{velocity}\:\mathrm{between}\:{t}_{\mathrm{1}} \\ $$$$\mathrm{and}\:{t}_{\mathrm{2}} \:\mathrm{is}\:\frac{{v}_{\mathrm{1}} \:+\:{v}_{\mathrm{2}} }{\mathrm{2}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Distance}\:\mathrm{travelled}\:\mathrm{in}\:\mathrm{successive} \\ $$$$\mathrm{equal}\:\mathrm{time}\:\mathrm{intervals}\:\mathrm{are}\:\mathrm{in}\:\mathrm{proportion} \\ $$$$\mathrm{of}\:\mathrm{1}\::\:\mathrm{3}\::\:\mathrm{5}\:...\:\mathrm{and}\:\mathrm{so}\:\mathrm{on} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{If}\:{v}_{\mathrm{1}} ,\:{v}_{\mathrm{2}} ,\:{v}_{\mathrm{3}} \:\mathrm{denote}\:\mathrm{the}\:\mathrm{average} \\ $$$$\mathrm{velocities}\:\mathrm{in}\:\mathrm{three}\:\mathrm{successive}\:\mathrm{intervals} \\ $$$$\mathrm{of}\:\mathrm{time}\:{t}_{\mathrm{1}} ,\:{t}_{\mathrm{2}} ,\:{t}_{\mathrm{3}} \:\mathrm{then}\:\frac{{v}_{\mathrm{1}} \:−\:{v}_{\mathrm{2}} }{{v}_{\mathrm{2}} \:−\:{v}_{\mathrm{3}} }\:=\:\frac{{t}_{\mathrm{1}} \:+\:{t}_{\mathrm{2}} }{{t}_{\mathrm{2}} \:+\:{t}_{\mathrm{3}} } \\ $$

Question Number 24685    Answers: 0   Comments: 3

The sum of the kinetic and potential energies of a system of objects is conserved (1) Only when no external force acts on the objects (2) Only when the objects move along closed paths (3) Only when the work done by the resultant external force is zero (4) None of these

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{kinetic}\:\mathrm{and}\:\mathrm{potential} \\ $$$$\mathrm{energies}\:\mathrm{of}\:\mathrm{a}\:\mathrm{system}\:\mathrm{of}\:\mathrm{objects}\:\mathrm{is}\:\mathrm{conserved} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Only}\:\mathrm{when}\:\mathrm{no}\:\mathrm{external}\:\mathrm{force}\:\mathrm{acts}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{objects} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Only}\:\mathrm{when}\:\mathrm{the}\:\mathrm{objects}\:\mathrm{move}\:\mathrm{along} \\ $$$$\mathrm{closed}\:\mathrm{paths} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Only}\:\mathrm{when}\:\mathrm{the}\:\mathrm{work}\:\mathrm{done}\:\mathrm{by}\:\mathrm{the} \\ $$$$\mathrm{resultant}\:\mathrm{external}\:\mathrm{force}\:\mathrm{is}\:\mathrm{zero} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{None}\:\mathrm{of}\:\mathrm{these} \\ $$

Question Number 21772    Answers: 2   Comments: 0

integrate ∫2^(4x) dx

$${integrate} \\ $$$$\int\mathrm{2}^{\mathrm{4}{x}} {dx} \\ $$

Question Number 21771    Answers: 0   Comments: 0

The result of 11 chess matches (as win, lose or draw) are to be forecast. Out of all possible forecasts, the number of ways in which 8 correct and 3 incorrect results can be forecast is

$$\mathrm{The}\:\mathrm{result}\:\mathrm{of}\:\mathrm{11}\:\mathrm{chess}\:\mathrm{matches}\:\left(\mathrm{as}\:\mathrm{win},\right. \\ $$$$\left.\mathrm{lose}\:\mathrm{or}\:\mathrm{draw}\right)\:\mathrm{are}\:\mathrm{to}\:\mathrm{be}\:\mathrm{forecast}.\:\mathrm{Out}\:\mathrm{of} \\ $$$$\mathrm{all}\:\mathrm{possible}\:\mathrm{forecasts},\:\mathrm{the}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{ways}\:\mathrm{in}\:\mathrm{which}\:\mathrm{8}\:\mathrm{correct}\:\mathrm{and}\:\mathrm{3}\:\mathrm{incorrect} \\ $$$$\mathrm{results}\:\mathrm{can}\:\mathrm{be}\:\mathrm{forecast}\:\mathrm{is} \\ $$

Question Number 21768    Answers: 0   Comments: 2

Six cards and six envelopes are numbered 1, 2, 3, 4, 5, 6 and cards are to be placed in envelopes so that each envelope contains exactly one card and no card is placed in the envelope bearing the same number and moreover the card numbered 1 is always placed in envelope numbered 2. Then the number of ways it can be done is

$$\mathrm{Six}\:\mathrm{cards}\:\mathrm{and}\:\mathrm{six}\:\mathrm{envelopes}\:\mathrm{are}\:\mathrm{numbered} \\ $$$$\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4},\:\mathrm{5},\:\mathrm{6}\:\mathrm{and}\:\mathrm{cards}\:\mathrm{are}\:\mathrm{to}\:\mathrm{be}\:\mathrm{placed} \\ $$$$\mathrm{in}\:\mathrm{envelopes}\:\mathrm{so}\:\mathrm{that}\:\mathrm{each}\:\mathrm{envelope} \\ $$$$\mathrm{contains}\:\mathrm{exactly}\:\mathrm{one}\:\mathrm{card}\:\mathrm{and}\:\mathrm{no}\:\mathrm{card} \\ $$$$\mathrm{is}\:\mathrm{placed}\:\mathrm{in}\:\mathrm{the}\:\mathrm{envelope}\:\mathrm{bearing}\:\mathrm{the} \\ $$$$\mathrm{same}\:\mathrm{number}\:\mathrm{and}\:\mathrm{moreover}\:\mathrm{the}\:\mathrm{card} \\ $$$$\mathrm{numbered}\:\mathrm{1}\:\mathrm{is}\:\mathrm{always}\:\mathrm{placed}\:\mathrm{in}\:\mathrm{envelope} \\ $$$$\mathrm{numbered}\:\mathrm{2}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways} \\ $$$$\mathrm{it}\:\mathrm{can}\:\mathrm{be}\:\mathrm{done}\:\mathrm{is} \\ $$

Question Number 21766    Answers: 1   Comments: 0

There are 3 apartments A, B and C for rent in a building. Each apartment will accept either 3 or 4 occupants. The number of ways of renting the apartments to 10 students

$$\mathrm{There}\:\mathrm{are}\:\mathrm{3}\:\mathrm{apartments}\:{A},\:{B}\:\mathrm{and}\:{C}\:\mathrm{for} \\ $$$$\mathrm{rent}\:\mathrm{in}\:\mathrm{a}\:\mathrm{building}.\:\mathrm{Each}\:\mathrm{apartment}\:\mathrm{will} \\ $$$$\mathrm{accept}\:\mathrm{either}\:\mathrm{3}\:\mathrm{or}\:\mathrm{4}\:\mathrm{occupants}.\:\mathrm{The} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{of}\:\mathrm{renting}\:\mathrm{the} \\ $$$$\mathrm{apartments}\:\mathrm{to}\:\mathrm{10}\:\mathrm{students} \\ $$

  Pg 1870      Pg 1871      Pg 1872      Pg 1873      Pg 1874      Pg 1875      Pg 1876      Pg 1877      Pg 1878      Pg 1879   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com