Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1875

Question Number 22437    Answers: 0   Comments: 11

A cubical block is held stationary against a rough wall by applying force ′F′ then incorrect statement among the following is (1) frictional force, f = Mg (2) f = N, N is normal reaction (3) F does not apply any torque (4) N does not apply any torque

$$\mathrm{A}\:\mathrm{cubical}\:\mathrm{block}\:\mathrm{is}\:\mathrm{held}\:\mathrm{stationary} \\ $$$$\mathrm{against}\:\mathrm{a}\:\mathrm{rough}\:\mathrm{wall}\:\mathrm{by}\:\mathrm{applying}\:\mathrm{force} \\ $$$$'\mathrm{F}'\:\mathrm{then}\:\boldsymbol{{incorrect}}\:\mathrm{statement}\:\mathrm{among} \\ $$$$\mathrm{the}\:\mathrm{following}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{frictional}\:\mathrm{force},\:\mathrm{f}\:=\:\mathrm{Mg} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{f}\:=\:\mathrm{N},\:\mathrm{N}\:\mathrm{is}\:\mathrm{normal}\:\mathrm{reaction} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{F}\:\mathrm{does}\:\mathrm{not}\:\mathrm{apply}\:\mathrm{any}\:\mathrm{torque} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{N}\:\mathrm{does}\:\mathrm{not}\:\mathrm{apply}\:\mathrm{any}\:\mathrm{torque} \\ $$

Question Number 22435    Answers: 0   Comments: 0

C_0 ^(2n) C_n −C_1 ^(2n−2) C_n +C_2 ^(2n−4) C_n .... equals to

$${C}_{\mathrm{0}} \:^{\mathrm{2}{n}} {C}_{{n}} −{C}_{\mathrm{1}} \:^{\mathrm{2}{n}−\mathrm{2}} {C}_{{n}} +{C}_{\mathrm{2}} \:^{\mathrm{2}{n}−\mathrm{4}} {C}_{{n}} \:.... \\ $$$$\mathrm{equals}\:\mathrm{to} \\ $$

Question Number 22434    Answers: 1   Comments: 0

Im(2z+1)/(iz−1)=2

$$\boldsymbol{\mathrm{I}}\mathrm{m}\left(\mathrm{2z}+\mathrm{1}\right)/\left(\mathrm{iz}−\mathrm{1}\right)=\mathrm{2} \\ $$

Question Number 22432    Answers: 0   Comments: 0

(((5 3)),((3 2)) )A + (((2 5)),((5 1)) ) = (((4 7)),((6 2)) ) Find ∣4A^(−1) ∣

$$\begin{pmatrix}{\mathrm{5}\:\:\:\mathrm{3}}\\{\mathrm{3}\:\:\:\mathrm{2}}\end{pmatrix}{A}\:+\:\begin{pmatrix}{\mathrm{2}\:\:\:\mathrm{5}}\\{\mathrm{5}\:\:\:\mathrm{1}}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{4}\:\:\:\:\mathrm{7}}\\{\mathrm{6}\:\:\:\:\mathrm{2}}\end{pmatrix} \\ $$$$\mathrm{Find}\:\mid\mathrm{4}{A}^{−\mathrm{1}} \mid \\ $$

Question Number 22423    Answers: 0   Comments: 0

Prove that no three consecutive binomial coefficient can be in G.P. or H.P.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{no}\:\mathrm{three}\:\mathrm{consecutive} \\ $$$$\mathrm{binomial}\:\mathrm{coefficient}\:\mathrm{can}\:\mathrm{be}\:\mathrm{in}\:\mathrm{G}.\mathrm{P}.\:\mathrm{or}\:\mathrm{H}.\mathrm{P}. \\ $$

Question Number 22407    Answers: 2   Comments: 0

Question Number 22404    Answers: 0   Comments: 16

Mr Tikutara,Do you study at AAKASH?

$${Mr}\:{Tikutara},{Do}\:{you}\: \\ $$$${study}\:{at}\:{AAKASH}? \\ $$

Question Number 22395    Answers: 0   Comments: 2

Question Number 22394    Answers: 0   Comments: 0

Prove that : ((^n C_0 )/n)−((^n C_1 )/(n+1))+((^n C_2 )/(n+2))−...+(−1)^n .((^n C_n )/(2n))=(1/(n.^(2n) C_n ))

$$\mathrm{Prove}\:\mathrm{that}\::\:\frac{\:^{{n}} {C}_{\mathrm{0}} }{{n}}−\frac{\:^{{n}} {C}_{\mathrm{1}} }{{n}+\mathrm{1}}+\frac{\:^{{n}} {C}_{\mathrm{2}} }{{n}+\mathrm{2}}−...+\left(−\mathrm{1}\right)^{{n}} .\frac{\:^{{n}} {C}_{{n}} }{\mathrm{2}{n}}=\frac{\mathrm{1}}{{n}.^{\mathrm{2}{n}} {C}_{{n}} } \\ $$

Question Number 22392    Answers: 0   Comments: 0

Show that the sum of odd coefficients in the expansion of (1 + 2x − 3x^2 )^(1025) is an even integer.

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{odd}\:\mathrm{coefficients} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}\:+\:\mathrm{2}{x}\:−\:\mathrm{3}{x}^{\mathrm{2}} \right)^{\mathrm{1025}} \\ $$$$\mathrm{is}\:\mathrm{an}\:\mathrm{even}\:\mathrm{integer}. \\ $$

Question Number 22389    Answers: 0   Comments: 0

Simplify: ^(n−1) C_2 +2^(n−2) C_2 +3^(n−3) C_2 +...+(n−2)^2 C_2

$${Simplify}: \\ $$$$\:^{{n}−\mathrm{1}} {C}_{\mathrm{2}} +\mathrm{2}\:^{{n}−\mathrm{2}} {C}_{\mathrm{2}} +\mathrm{3}\:^{{n}−\mathrm{3}} {C}_{\mathrm{2}} +...+\left({n}−\mathrm{2}\right)\:^{\mathrm{2}} {C}_{\mathrm{2}} \\ $$

Question Number 22388    Answers: 1   Comments: 0

if t_1 ,t_2 are the extremeties of any focal chord of the parabola y^2 =4ax,then t_1 t_(2=)

$${if}\:{t}_{\mathrm{1}} \:,{t}_{\mathrm{2}} \:{are}\:{the}\:{extremeties}\:{of}\:{any}\:{focal}\:{chord}\:{of}\:{the}\:{parabola}\:{y}^{\mathrm{2}} =\mathrm{4}{ax},{then}\:{t}_{\mathrm{1}} {t}_{\mathrm{2}=} \\ $$

Question Number 22387    Answers: 0   Comments: 0

the arguments of n^(th) roots of a complex number differ by

$${the}\:{arguments}\:{of}\:{n}^{{th}} \:{roots}\:{of}\:{a}\:{complex}\:{number}\:{differ}\:{by} \\ $$

Question Number 22386    Answers: 0   Comments: 0

equivalent matrices are obtained by

$${equivalent}\:{matrices}\:{are}\:{obtained}\:{by} \\ $$

Question Number 22384    Answers: 0   Comments: 0

Question Number 22379    Answers: 1   Comments: 0

For each positive integer n, define a_n = 20 + n^2 , and d_n = gcd(a_n , a_(n+1) ). Find the set of all values that are taken by d_n and show by examples that each of these values are attained.

$$\mathrm{For}\:\mathrm{each}\:\mathrm{positive}\:\mathrm{integer}\:{n},\:\mathrm{define}\:{a}_{{n}} \:= \\ $$$$\mathrm{20}\:+\:{n}^{\mathrm{2}} ,\:\mathrm{and}\:{d}_{{n}} \:=\:{gcd}\left({a}_{{n}} ,\:{a}_{{n}+\mathrm{1}} \right).\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{all}\:\mathrm{values}\:\mathrm{that}\:\mathrm{are}\:\mathrm{taken}\:\mathrm{by} \\ $$$${d}_{{n}} \:\mathrm{and}\:\mathrm{show}\:\mathrm{by}\:\mathrm{examples}\:\mathrm{that}\:\mathrm{each}\:\mathrm{of} \\ $$$$\mathrm{these}\:\mathrm{values}\:\mathrm{are}\:\mathrm{attained}. \\ $$

Question Number 22372    Answers: 1   Comments: 4

Question Number 22370    Answers: 1   Comments: 3

A uniform flexible chain of length (3/2) m rests on a fixed smooth sphere of radius R = (2/π) m such that one end A of chain is on the top of the sphere while the other end B is hanging freely. Chain is held stationary by a horizontal thread PA. Calculate the acceleration of chain when the horizontal string PA is burnt. (g = 10 m/s^2 )

$$\mathrm{A}\:\mathrm{uniform}\:\mathrm{flexible}\:\mathrm{chain}\:\mathrm{of}\:\mathrm{length}\:\frac{\mathrm{3}}{\mathrm{2}}\:\mathrm{m} \\ $$$$\mathrm{rests}\:\mathrm{on}\:\mathrm{a}\:\mathrm{fixed}\:\mathrm{smooth}\:\mathrm{sphere}\:\mathrm{of} \\ $$$$\mathrm{radius}\:{R}\:=\:\frac{\mathrm{2}}{\pi}\:\mathrm{m}\:\mathrm{such}\:\mathrm{that}\:\mathrm{one}\:\mathrm{end}\:{A}\:\mathrm{of} \\ $$$$\mathrm{chain}\:\mathrm{is}\:\mathrm{on}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sphere}\:\mathrm{while} \\ $$$$\mathrm{the}\:\mathrm{other}\:\mathrm{end}\:{B}\:\mathrm{is}\:\mathrm{hanging}\:\mathrm{freely}.\:\mathrm{Chain} \\ $$$$\mathrm{is}\:\mathrm{held}\:\mathrm{stationary}\:\mathrm{by}\:\mathrm{a}\:\mathrm{horizontal} \\ $$$$\mathrm{thread}\:{PA}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{acceleration} \\ $$$$\mathrm{of}\:\mathrm{chain}\:\mathrm{when}\:\mathrm{the}\:\mathrm{horizontal}\:\mathrm{string}\:{PA} \\ $$$$\mathrm{is}\:\mathrm{burnt}.\:\left({g}\:=\:\mathrm{10}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right) \\ $$

Question Number 22368    Answers: 0   Comments: 0

The first and second ionization potentials of helium atoms are 24.58 eV and 54.4 eV per mole respectively. Calculate the energy in kJ required to produce 1 mole of He^(2+) ions.

$$\mathrm{The}\:\mathrm{first}\:\mathrm{and}\:\mathrm{second}\:\mathrm{ionization} \\ $$$$\mathrm{potentials}\:\mathrm{of}\:\mathrm{helium}\:\mathrm{atoms}\:\mathrm{are}\:\mathrm{24}.\mathrm{58}\:\mathrm{eV} \\ $$$$\mathrm{and}\:\mathrm{54}.\mathrm{4}\:\mathrm{eV}\:\mathrm{per}\:\mathrm{mole}\:\mathrm{respectively}. \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{energy}\:\mathrm{in}\:\mathrm{kJ}\:\mathrm{required}\:\mathrm{to} \\ $$$$\mathrm{produce}\:\mathrm{1}\:\mathrm{mole}\:\mathrm{of}\:\mathrm{He}^{\mathrm{2}+} \:\mathrm{ions}. \\ $$

Question Number 22365    Answers: 1   Comments: 0

Question Number 22361    Answers: 0   Comments: 0

Question Number 22348    Answers: 1   Comments: 0

The sum of all the solutions of the equation 1 + 2 cosec x = −((sec^2 (x/2))/2) in the interval [0, 4π] is nπ, where n is equal to

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{1}\:+\:\mathrm{2}\:\mathrm{cosec}\:{x}\:=\:−\frac{\mathrm{sec}^{\mathrm{2}} \:\frac{{x}}{\mathrm{2}}}{\mathrm{2}}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{interval}\:\left[\mathrm{0},\:\mathrm{4}\pi\right]\:\mathrm{is}\:{n}\pi,\:\mathrm{where}\:{n}\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 22347    Answers: 0   Comments: 0

Total number of solutions of ∣cot x∣ = cot x + (1/(sin x)), x ∈ [0, 3π] is equal to

$$\mathrm{Total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of}\:\mid\mathrm{cot}\:{x}\mid\:= \\ $$$$\mathrm{cot}\:{x}\:+\:\frac{\mathrm{1}}{\mathrm{sin}\:{x}},\:{x}\:\in\:\left[\mathrm{0},\:\mathrm{3}\pi\right]\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 22345    Answers: 1   Comments: 1

6^(x+2) =2(3^x ), find x?

$$\mathrm{6}^{\mathrm{x}+\mathrm{2}} =\mathrm{2}\left(\mathrm{3}^{\mathrm{x}} \right),\:\mathrm{find}\:\mathrm{x}? \\ $$

Question Number 22332    Answers: 1   Comments: 0

Question Number 22325    Answers: 0   Comments: 0

If separate samples of argon, methane, nitrogen and carbon dioxide, all at the same initial temperature and pressure and expanded adiabatically reversibally to double their original volumes, then which one of these gases will have high temperature as final temperature?

$$\mathrm{If}\:\mathrm{separate}\:\mathrm{samples}\:\mathrm{of}\:\mathrm{argon},\:\mathrm{methane}, \\ $$$$\mathrm{nitrogen}\:\mathrm{and}\:\mathrm{carbon}\:\mathrm{dioxide},\:\mathrm{all}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{same}\:\mathrm{initial}\:\mathrm{temperature}\:\mathrm{and}\:\mathrm{pressure} \\ $$$$\mathrm{and}\:\mathrm{expanded}\:\mathrm{adiabatically}\:\mathrm{reversibally} \\ $$$$\mathrm{to}\:\mathrm{double}\:\mathrm{their}\:\mathrm{original}\:\mathrm{volumes},\:\mathrm{then} \\ $$$$\mathrm{which}\:\mathrm{one}\:\mathrm{of}\:\mathrm{these}\:\mathrm{gases}\:\mathrm{will}\:\mathrm{have}\:\mathrm{high} \\ $$$$\mathrm{temperature}\:\mathrm{as}\:\mathrm{final}\:\mathrm{temperature}? \\ $$

  Pg 1870      Pg 1871      Pg 1872      Pg 1873      Pg 1874      Pg 1875      Pg 1876      Pg 1877      Pg 1878      Pg 1879   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com