Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1869

Question Number 20254    Answers: 1   Comments: 0

∫(dx/((x−1)(√(x^2 +1))))

$$\int\frac{{dx}}{\left({x}−\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$

Question Number 20281    Answers: 0   Comments: 0

Compute the volume bounded by the surfaces: y=x^2 , x=y^2 , z=0, z=12+y−x^2 . [ Ans. ((549)/(144))]

$${Compute}\:{the}\:{volume}\:{bounded}\:{by} \\ $$$${the}\:{surfaces}:\:{y}={x}^{\mathrm{2}} ,\:{x}={y}^{\mathrm{2}} ,\:{z}=\mathrm{0}, \\ $$$${z}=\mathrm{12}+{y}−{x}^{\mathrm{2}} .\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\:{Ans}.\:\:\:\:\frac{\mathrm{549}}{\mathrm{144}}\right] \\ $$

Question Number 20245    Answers: 2   Comments: 0

y=2^(1/(log_x 8)) then x=?

$$\mathrm{y}=\mathrm{2}^{\frac{\mathrm{1}}{{log}_{{x}} \mathrm{8}}} \\ $$$${then}\:{x}=? \\ $$

Question Number 20244    Answers: 1   Comments: 0

∫(dx/((2−x)(√x)))

$$\int\frac{{dx}}{\left(\mathrm{2}−{x}\right)\sqrt{{x}}} \\ $$

Question Number 20243    Answers: 1   Comments: 0

∫(dx/(x+(√x)))

$$\int\frac{{dx}}{{x}+\sqrt{{x}}} \\ $$

Question Number 20242    Answers: 1   Comments: 0

∫((5x^2 +11x+26)/(x^2 +2x+5))dx integration by partial fraction

$$\int\frac{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{11}{x}+\mathrm{26}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}{dx} \\ $$$${integration}\:{by}\:{partial}\:{fraction} \\ $$

Question Number 20241    Answers: 1   Comments: 0

partial fraction ∫((2x^2 +5x−9)/(√(x^2 −x+1)))dx

$${partial}\:{fraction} \\ $$$$\int\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{5}{x}−\mathrm{9}}{\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}{dx} \\ $$

Question Number 20279    Answers: 0   Comments: 0

Determine a relation between the coefficients a, b, c, d such that the equation: ax^3 +bx^2 +cx+d=0 has three real roots (with a pair of double roots).

$${Determine}\:{a}\:{relation}\:{between}\:\:{the} \\ $$$${coefficients}\:\:\boldsymbol{{a}},\:\boldsymbol{{b}},\:\boldsymbol{{c}},\:\boldsymbol{{d}}\:{such}\:{that}\:{the} \\ $$$${equation}:\:\:{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0} \\ $$$${has}\:{three}\:{real}\:{roots}\:\left({with}\:{a}\:{pair}\right. \\ $$$$\left.{of}\:{double}\:{roots}\right). \\ $$

Question Number 20239    Answers: 1   Comments: 0

∫(((2x+3)dx)/(√(x^2 +4x−7)))

$$\int\frac{\left(\mathrm{2}{x}+\mathrm{3}\right){dx}}{\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{7}}} \\ $$

Question Number 20238    Answers: 1   Comments: 1

∫(dx/(x^2 −x+1))

$$\int\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$

Question Number 20237    Answers: 0   Comments: 1

∫(e^(tan^(−1) x) /(1+x^2 ))dx

$$\int\frac{{e}^{\mathrm{tan}^{−\mathrm{1}} {x}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 20235    Answers: 0   Comments: 1

if t_((m+1)) =2t_((n+1)) so proof t_((3m+1)) =2t_((m+n+1) ) help please.........

$$ \\ $$$${if}\:\:\:\:\:\:\:\:{t}_{\left({m}+\mathrm{1}\right)} =\mathrm{2}{t}_{\left({n}+\mathrm{1}\right)} \\ $$$${so}\:{proof} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{t}_{\left(\mathrm{3}{m}+\mathrm{1}\right)} =\mathrm{2}{t}_{\left({m}+{n}+\mathrm{1}\right)\:\:\:\:\:\:} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{help}\:{please}......... \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 20230    Answers: 1   Comments: 5

Question Number 20217    Answers: 0   Comments: 1

Question Number 20205    Answers: 1   Comments: 0

find the sin^(−1) diferentiation

$${find}\:{the}\:{sin}^{−\mathrm{1}} \:{diferentiation} \\ $$

Question Number 20204    Answers: 0   Comments: 0

Question Number 20203    Answers: 0   Comments: 1

Question Number 20201    Answers: 2   Comments: 0

^4 (√(49 − 20(√6))) =

$$\:^{\mathrm{4}} \sqrt{\mathrm{49}\:−\:\mathrm{20}\sqrt{\mathrm{6}}}\:= \\ $$

Question Number 20200    Answers: 1   Comments: 0

Question Number 20198    Answers: 1   Comments: 0

Find exact form of cos (tan^(−1) ((1/2)))

$$\mathrm{Find}\:\mathrm{exact}\:\mathrm{form}\:\mathrm{of} \\ $$$$\mathrm{cos}\:\left(\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$

Question Number 20195    Answers: 1   Comments: 0

Question Number 20194    Answers: 0   Comments: 5

A plane is drawn through the midpoint of a diagonal of a cube perpendicular to the diagonal. Determine the area of the figure resulting from the section of the cube cut by this plane if the edge of the cube is equal to a.

$${A}\:{plane}\:{is}\:{drawn}\:{through}\:{the}\: \\ $$$${midpoint}\:{of}\:{a}\:{diagonal}\:{of}\:{a}\:{cube} \\ $$$${perpendicular}\:{to}\:{the}\:{diagonal}. \\ $$$${Determine}\:{the}\:{area}\:{of}\:{the}\:{figure} \\ $$$${resulting}\:{from}\:{the}\:{section}\:{of}\:{the} \\ $$$${cube}\:{cut}\:{by}\:{this}\:{plane}\:{if}\:{the}\:{edge} \\ $$$${of}\:{the}\:{cube}\:{is}\:{equal}\:{to}\:\boldsymbol{{a}}. \\ $$

Question Number 20192    Answers: 0   Comments: 0

t_1 =3, t_n =3t_(n−1) +2 ....n>1

$$ \\ $$$${t}_{\mathrm{1}} =\mathrm{3},\:{t}_{{n}} =\mathrm{3}{t}_{{n}−\mathrm{1}} +\mathrm{2}\:\:\:\:\:....{n}>\mathrm{1} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 20202    Answers: 0   Comments: 10

Is definite integral can have negative value? Because I think ∫_a ^b f(x) dx is total area below graph f(x) from x = a until x = b, so it can′t be negative

$$\mathrm{Is}\:\mathrm{definite}\:\mathrm{integral}\:\mathrm{can}\:\mathrm{have}\:\mathrm{negative}\:\mathrm{value}? \\ $$$$\mathrm{Because}\:\mathrm{I}\:\mathrm{think}\:\int_{{a}} ^{{b}} {f}\left({x}\right)\:{dx}\:\mathrm{is}\:\mathrm{total}\:\mathrm{area}\:\mathrm{below} \\ $$$$\mathrm{graph}\:{f}\left({x}\right)\:\mathrm{from}\:{x}\:=\:{a}\:\mathrm{until}\:{x}\:=\:{b},\:\mathrm{so}\:\mathrm{it}\:\mathrm{can}'\mathrm{t} \\ $$$$\mathrm{be}\:\mathrm{negative} \\ $$

Question Number 20182    Answers: 0   Comments: 0

Question Number 20187    Answers: 0   Comments: 1

t_n =(t_(n−1) /n^2 ), t_1 =3;t_2 ,t_3 ,(n≥2)

$${t}_{{n}} =\frac{{t}_{{n}−\mathrm{1}} }{{n}^{\mathrm{2}} },\:{t}_{\mathrm{1}} =\mathrm{3};{t}_{\mathrm{2}} ,{t}_{\mathrm{3}} ,\left({n}\geqslant\mathrm{2}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

  Pg 1864      Pg 1865      Pg 1866      Pg 1867      Pg 1868      Pg 1869      Pg 1870      Pg 1871      Pg 1872      Pg 1873   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com