Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1857

Question Number 23269    Answers: 1   Comments: 0

Prove that 3k+2 is not perfect square for all k∈{0,1,2,3,...}.

$$\mathbb{P}\mathrm{rove}\:\mathrm{that} \\ $$$$\:\mathrm{3k}+\mathrm{2}\:\mathrm{is}\:\mathrm{not}\:\mathrm{perfect}\:\mathrm{square}\:\mathrm{for} \\ $$$$\mathrm{all}\:\mathrm{k}\in\left\{\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},...\right\}. \\ $$

Question Number 23262    Answers: 0   Comments: 2

Question Number 23251    Answers: 0   Comments: 1

Question Number 23250    Answers: 0   Comments: 0

If (1 + x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + ... + C_n x^n , then prove that ΣΣ_(0≤i<j≤n) ((i/(^n C_i )) + (j/(^n C_j ))) = (n^2 /2)(Σ_(r=0) ^n (1/(^n C_r ))).

$${If}\:\left(\mathrm{1}\:+\:{x}\right)^{{n}} \:=\:{C}_{\mathrm{0}} \:+\:{C}_{\mathrm{1}} {x}\:+\:{C}_{\mathrm{2}} {x}^{\mathrm{2}} \:+\:{C}_{\mathrm{3}} {x}^{\mathrm{3}} \\ $$$$+\:...\:+\:{C}_{{n}} {x}^{{n}} ,\:{then}\:{prove}\:{that} \\ $$$$\underset{\mathrm{0}\leqslant{i}<{j}\leqslant{n}} {\Sigma\Sigma}\left(\frac{{i}}{\:^{{n}} {C}_{{i}} }\:+\:\frac{{j}}{\:^{{n}} {C}_{{j}} }\right)\:=\:\frac{{n}^{\mathrm{2}} }{\mathrm{2}}\left(\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\:^{{n}} {C}_{{r}} }\right). \\ $$

Question Number 23243    Answers: 0   Comments: 2

2^(n−1) sin a×sin 2a×sin 3a×......×sin (n−1)a=n why?

$$\mathrm{2}^{\mathrm{n}−\mathrm{1}} \mathrm{sin}\:\mathrm{a}×\mathrm{sin}\:\mathrm{2a}×\mathrm{sin}\:\mathrm{3a}×......×\mathrm{sin}\:\left(\mathrm{n}−\mathrm{1}\right)\mathrm{a}=\mathrm{n}\:\mathrm{why}? \\ $$

Question Number 23237    Answers: 0   Comments: 6

Question Number 23231    Answers: 1   Comments: 0

The number of solution(s) of the equation x^3 + x^2 + 4x + 2sinx = 0 in [0, 2π], is/are

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solution}\left(\mathrm{s}\right)\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$${x}^{\mathrm{3}} \:+\:{x}^{\mathrm{2}} \:+\:\mathrm{4}{x}\:+\:\mathrm{2sin}{x}\:=\:\mathrm{0}\:\mathrm{in}\:\left[\mathrm{0},\:\mathrm{2}\pi\right],\:\mathrm{is}/\mathrm{are} \\ $$

Question Number 23226    Answers: 1   Comments: 4

Question Number 23224    Answers: 0   Comments: 4

Consider the system shown in the figure. Initially the system was in rest. (i) Find the acceleration of block if man climbs the rod with acceleration a (w.r.t. rod) (ii) If the man climb to the top of the rod then find the distance moved by the block.

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{system}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{figure}.\:\mathrm{Initially}\:\mathrm{the}\:\mathrm{system}\:\mathrm{was}\:\mathrm{in}\:\mathrm{rest}. \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{block}\:\mathrm{if}\:\mathrm{man} \\ $$$$\mathrm{climbs}\:\mathrm{the}\:\mathrm{rod}\:\mathrm{with}\:\mathrm{acceleration}\:{a}\:\left(\mathrm{w}.\mathrm{r}.\mathrm{t}.\right. \\ $$$$\left.\mathrm{rod}\right) \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{If}\:\mathrm{the}\:\mathrm{man}\:\mathrm{climb}\:\mathrm{to}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{rod}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{moved}\:\mathrm{by}\:\mathrm{the} \\ $$$$\mathrm{block}. \\ $$

Question Number 23223    Answers: 1   Comments: 0

Question Number 23253    Answers: 1   Comments: 8

Question Number 23190    Answers: 1   Comments: 1

lim_(x→∞) (((x−2)/(3x+10)))^(5x)

$$\underset{\boldsymbol{\mathrm{x}}\rightarrow\infty} {\boldsymbol{\mathrm{lim}}}\left(\frac{\boldsymbol{\mathrm{x}}−\mathrm{2}}{\mathrm{3}\boldsymbol{\mathrm{x}}+\mathrm{10}}\right)^{\mathrm{5}\boldsymbol{\mathrm{x}}} \\ $$

Question Number 23208    Answers: 1   Comments: 0

Is it possible to find how many real roots exist in the equation x^4 + ∣x∣ = 3 without find all the value of x?

$$\mathrm{Is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{find}\:\mathrm{how}\:\mathrm{many}\:\mathrm{real}\:\mathrm{roots}\: \\ $$$$\mathrm{exist}\:\mathrm{in}\:\mathrm{the}\:\mathrm{equation} \\ $$$${x}^{\mathrm{4}} \:+\:\mid{x}\mid\:=\:\mathrm{3} \\ $$$$\mathrm{without}\:\mathrm{find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:{x}? \\ $$

Question Number 23205    Answers: 0   Comments: 0

thank u.....

$${thank}\:{u}..... \\ $$

Question Number 23187    Answers: 0   Comments: 0

plz anyone answer the question 23181...plz plz plz...

$${plz}\:\:\:{anyone}\:{answer}\:{the}\:{question}\: \\ $$$$\mathrm{23181}...{plz}\:{plz}\:{plz}... \\ $$

Question Number 23181    Answers: 0   Comments: 2

show that the curve with parametric equcations x=t^2 −3t+5, y=t^3 +t^2 −10t+9 intersect at the point (3,1).

$${show}\:{that}\:{the}\:{curve}\:{with}\:{parametric}\: \\ $$$${equcations}\:\:{x}={t}^{\mathrm{2}} \:−\mathrm{3}{t}+\mathrm{5}, \\ $$$${y}={t}^{\mathrm{3}} \:+{t}^{\mathrm{2}} \:−\mathrm{10}{t}+\mathrm{9}\:{intersect}\:{at}\:{the}\: \\ $$$${point}\:\left(\mathrm{3},\mathrm{1}\right). \\ $$

Question Number 23179    Answers: 2   Comments: 1

Question Number 23212    Answers: 1   Comments: 1

Question Number 23170    Answers: 0   Comments: 2

Question Number 23215    Answers: 0   Comments: 0

Assertion: The element with electronic configuration [Xe]^(54) 4f^1 5d^1 6s^2 is a d- block element. Reason: The last electron enters the d- orbital.

$$\boldsymbol{\mathrm{Assertion}}:\:\mathrm{The}\:\mathrm{element}\:\mathrm{with}\:\mathrm{electronic} \\ $$$$\mathrm{configuration}\:\left[\mathrm{Xe}\right]^{\mathrm{54}} \:\mathrm{4}{f}^{\mathrm{1}} \:\mathrm{5}{d}^{\mathrm{1}} \:\mathrm{6}{s}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{a}\:{d}- \\ $$$$\mathrm{block}\:\mathrm{element}. \\ $$$$\boldsymbol{\mathrm{Reason}}:\:\mathrm{The}\:\mathrm{last}\:\mathrm{electron}\:\mathrm{enters}\:\mathrm{the}\:{d}- \\ $$$$\mathrm{orbital}. \\ $$

Question Number 23146    Answers: 0   Comments: 5

Square planar complex is formed by hybridisation of which atomic orbitals? (1) s, p_x , p_y , p_z (2) s, p_x , p_y , d_z^2 (3) s, p_x , p_y , d_(x^2 −y^2 ) (4) s, p_x , p_y , d_z^3

$$\mathrm{Square}\:\mathrm{planar}\:\mathrm{complex}\:\mathrm{is}\:\mathrm{formed}\:\mathrm{by} \\ $$$$\mathrm{hybridisation}\:\mathrm{of}\:\mathrm{which}\:\mathrm{atomic}\:\mathrm{orbitals}? \\ $$$$\left(\mathrm{1}\right)\:{s},\:{p}_{{x}} ,\:{p}_{{y}} ,\:{p}_{{z}} \\ $$$$\left(\mathrm{2}\right)\:{s},\:{p}_{{x}} ,\:{p}_{{y}} ,\:{d}_{{z}^{\mathrm{2}} } \\ $$$$\left(\mathrm{3}\right)\:{s},\:{p}_{{x}} ,\:{p}_{{y}} ,\:{d}_{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \\ $$$$\left(\mathrm{4}\right)\:{s},\:{p}_{{x}} ,\:{p}_{{y}} ,\:{d}_{{z}^{\mathrm{3}} } \\ $$

Question Number 23135    Answers: 1   Comments: 0

The standard enthalpy of formation of gaseous H_2 O at 298 K is −241.82 kJ mol^(−1) . Estimate its value of 100°C given the following values of the molar heat capacities at constant pressure: H_2 O(g) : 35.58 JK^(−1) mol^(−1) , H_2 (g) : 28.84 J mol^(−1) K^(−1) and O_2 (g) : 29.37 J mol^(−1) K^(−1) . Assume heat capacity to be independent of temperature.

$$\mathrm{The}\:\mathrm{standard}\:\mathrm{enthalpy}\:\mathrm{of}\:\mathrm{formation}\:\mathrm{of} \\ $$$$\mathrm{gaseous}\:\mathrm{H}_{\mathrm{2}} \mathrm{O}\:\mathrm{at}\:\mathrm{298}\:\mathrm{K}\:\mathrm{is}\:−\mathrm{241}.\mathrm{82}\:\mathrm{kJ} \\ $$$$\mathrm{mol}^{−\mathrm{1}} .\:\mathrm{Estimate}\:\mathrm{its}\:\mathrm{value}\:\mathrm{of}\:\mathrm{100}°\mathrm{C}\:\mathrm{given} \\ $$$$\mathrm{the}\:\mathrm{following}\:\mathrm{values}\:\mathrm{of}\:\mathrm{the}\:\mathrm{molar}\:\mathrm{heat} \\ $$$$\mathrm{capacities}\:\mathrm{at}\:\mathrm{constant}\:\mathrm{pressure}: \\ $$$$\mathrm{H}_{\mathrm{2}} \mathrm{O}\left(\mathrm{g}\right)\::\:\mathrm{35}.\mathrm{58}\:\mathrm{JK}^{−\mathrm{1}} \:\mathrm{mol}^{−\mathrm{1}} ,\:\mathrm{H}_{\mathrm{2}} \left(\mathrm{g}\right)\:: \\ $$$$\mathrm{28}.\mathrm{84}\:\mathrm{J}\:\mathrm{mol}^{−\mathrm{1}} \:\mathrm{K}^{−\mathrm{1}} \:\mathrm{and}\:\mathrm{O}_{\mathrm{2}} \left(\mathrm{g}\right)\::\:\mathrm{29}.\mathrm{37}\:\mathrm{J} \\ $$$$\mathrm{mol}^{−\mathrm{1}} \:\mathrm{K}^{−\mathrm{1}} .\:\mathrm{Assume}\:\mathrm{heat}\:\mathrm{capacity}\:\mathrm{to}\:\mathrm{be} \\ $$$$\mathrm{independent}\:\mathrm{of}\:\mathrm{temperature}. \\ $$

Question Number 23138    Answers: 1   Comments: 1

Question Number 23133    Answers: 1   Comments: 0

Find the minimum surface area of a solid circular cylinder , if its volume is 16π cm^3 (leave your answer in terms of π)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{surface}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{solid}\:\mathrm{circular}\:\mathrm{cylinder}\:,\:\:\mathrm{if}\:\mathrm{its}\:\mathrm{volume}\:\mathrm{is} \\ $$$$\mathrm{16}\pi\:\mathrm{cm}^{\mathrm{3}} \:\:\:\left(\mathrm{leave}\:\mathrm{your}\:\mathrm{answer}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\pi\right) \\ $$

Question Number 23131    Answers: 0   Comments: 7

Question Number 23130    Answers: 0   Comments: 1

A baloon filled with helium rises against gravity increasing its potential energy. The speed of the baloon also increases as it rises. How do you reconcile this with the law of conservation of mechanical energy? You can neglect viscous drag of air and assume that density of air is constant.

$$\mathrm{A}\:\mathrm{baloon}\:\mathrm{filled}\:\mathrm{with}\:\mathrm{helium}\:\mathrm{rises}\:\mathrm{against} \\ $$$$\mathrm{gravity}\:\mathrm{increasing}\:\mathrm{its}\:\mathrm{potential}\:\mathrm{energy}. \\ $$$$\mathrm{The}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{baloon}\:\mathrm{also}\:\mathrm{increases} \\ $$$$\mathrm{as}\:\mathrm{it}\:\mathrm{rises}.\:\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{reconcile}\:\mathrm{this} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{law}\:\mathrm{of}\:\mathrm{conservation}\:\mathrm{of} \\ $$$$\mathrm{mechanical}\:\mathrm{energy}?\:\mathrm{You}\:\mathrm{can}\:\mathrm{neglect} \\ $$$$\mathrm{viscous}\:\mathrm{drag}\:\mathrm{of}\:\mathrm{air}\:\mathrm{and}\:\mathrm{assume}\:\mathrm{that} \\ $$$$\mathrm{density}\:\mathrm{of}\:\mathrm{air}\:\mathrm{is}\:\mathrm{constant}. \\ $$

  Pg 1852      Pg 1853      Pg 1854      Pg 1855      Pg 1856      Pg 1857      Pg 1858      Pg 1859      Pg 1860      Pg 1861   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com