Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1857

Question Number 23472    Answers: 1   Comments: 1

Question Number 23471    Answers: 1   Comments: 0

Prove that ΣΣ_(0≤i<j≤n) ((1/(^n C_i )) + (1/(^n C_j ))) = Σ_(r=0) ^(n−1) ((n − r)/(^n C_r )) + Σ_(r=1) ^n (r/(^n C_r ))

$${Prove}\:{that} \\ $$$$\underset{\mathrm{0}\leqslant{i}<{j}\leqslant{n}} {\Sigma\Sigma}\left(\frac{\mathrm{1}}{\:^{{n}} {C}_{{i}} }\:+\:\frac{\mathrm{1}}{\:^{{n}} {C}_{{j}} }\right)\:=\:\underset{{r}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{{n}\:−\:{r}}{\:^{{n}} {C}_{{r}} }\:+\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{r}}{\:^{{n}} {C}_{{r}} } \\ $$

Question Number 23458    Answers: 0   Comments: 1

Question Number 23445    Answers: 1   Comments: 0

Solve the equation: (∂^2 u/(∂x∂y)) = sin(x)cos(y), subjected to the boundary conditions at y = (π/2), (∂u/∂x) = 2x and x = π, u = 2sin(y)

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}:\:\:\:\frac{\partial^{\mathrm{2}} \mathrm{u}}{\partial\mathrm{x}\partial\mathrm{y}}\:=\:\mathrm{sin}\left(\mathrm{x}\right)\mathrm{cos}\left(\mathrm{y}\right),\:\:\:\mathrm{subjected}\:\mathrm{to}\:\mathrm{the}\:\mathrm{boundary} \\ $$$$\mathrm{conditions}\:\mathrm{at}\:\:\:\mathrm{y}\:=\:\frac{\pi}{\mathrm{2}},\:\:\:\:\frac{\partial\mathrm{u}}{\partial\mathrm{x}}\:=\:\mathrm{2x}\:\:\:\:\mathrm{and}\:\:\:\:\:\mathrm{x}\:=\:\pi,\:\:\:\:\mathrm{u}\:=\:\mathrm{2sin}\left(\mathrm{y}\right) \\ $$

Question Number 23444    Answers: 0   Comments: 0

Question Number 23442    Answers: 1   Comments: 2

Find a unit vector which is perpendicula to a vector A(3coma5coma1) Sorry for writing coma cuz i dnt see a key for it

$$\mathrm{Find}\:\mathrm{a}\:\mathrm{unit}\:\mathrm{vector}\:\mathrm{which}\:\mathrm{is}\:\mathrm{perpendicula} \\ $$$$\mathrm{to}\:\mathrm{a}\:\mathrm{vector}\:\mathrm{A}\left(\mathrm{3coma5coma1}\right) \\ $$$$ \\ $$$$\mathrm{Sorry}\:\mathrm{for}\:\mathrm{writing}\:\mathrm{coma}\:\mathrm{cuz}\:\mathrm{i}\:\mathrm{dnt}\:\mathrm{see}\:\mathrm{a}\:\mathrm{key}\:\mathrm{for}\:\mathrm{it} \\ $$

Question Number 23433    Answers: 0   Comments: 0

∫_0 ^∞ X^6 e^(−x/2) dx=

$$\int_{\mathrm{0}} ^{\infty} {X}^{\mathrm{6}} {e}^{−{x}/\mathrm{2}} {dx}= \\ $$

Question Number 23432    Answers: 1   Comments: 0

∫_0 ^a f(x)dx=

$$\int_{\mathrm{0}} ^{{a}} {f}\left({x}\right){dx}= \\ $$

Question Number 23431    Answers: 0   Comments: 0

If X is a discrete random variable then p(X≥a)=

$${If}\:{X}\:{is}\:{a}\:{discrete}\:{random}\:{variable}\:{then}\:{p}\left({X}\geqslant{a}\right)= \\ $$

Question Number 23429    Answers: 0   Comments: 1

An asymptote to the curve y^2 (1+x)=x^2 (1−x) is

$${An}\:{asymptote}\:{to}\:{the}\:{curve}\:{y}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)={x}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)\:{is} \\ $$

Question Number 23428    Answers: 2   Comments: 0

the curve ay^2 =x^2 (3a−x) cuts the y-axis at

$${the}\:{curve}\:{ay}^{\mathrm{2}} ={x}^{\mathrm{2}} \left(\mathrm{3}{a}−{x}\right)\:{cuts}\:{the}\:{y}-{axis}\:{at} \\ $$

Question Number 23426    Answers: 1   Comments: 0

just a silly question: write a correct maths equation using only symbols below. Each must be used and only once. 2, 3, 4, 5, =, +

$${just}\:{a}\:{silly}\:{question}: \\ $$$${write}\:{a}\:{correct}\:{maths}\:{equation} \\ $$$${using}\:{only}\:{symbols}\:{below}.\:{Each} \\ $$$${must}\:{be}\:{used}\:{and}\:{only}\:{once}. \\ $$$$\:\:\:\:\:\mathrm{2},\:\mathrm{3},\:\mathrm{4},\:\mathrm{5},\:=,\:+ \\ $$

Question Number 23425    Answers: 0   Comments: 0

a,b,c>0 ⇒((a^3 +b^3 +c^3 )/((a+b)(b+c)(c+a)))≥(3/8) ?

$$\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}}>\mathrm{0}\:\Rightarrow\frac{\boldsymbol{{a}}^{\mathrm{3}} +\boldsymbol{{b}}^{\mathrm{3}} +\boldsymbol{{c}}^{\mathrm{3}} }{\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)\left(\boldsymbol{{b}}+\boldsymbol{{c}}\right)\left(\boldsymbol{{c}}+\boldsymbol{{a}}\right)}\geqslant\frac{\mathrm{3}}{\mathrm{8}}\:? \\ $$

Question Number 23419    Answers: 2   Comments: 0

Question Number 23418    Answers: 1   Comments: 0

∫sec^2 (√x) /(√x) dx

$$\int\mathrm{sec}\:^{\mathrm{2}} \sqrt{\mathrm{x}}\:/\sqrt{\mathrm{x}}\:\mathrm{dx} \\ $$

Question Number 23411    Answers: 2   Comments: 1

Question Number 23409    Answers: 1   Comments: 0

Hybridisation of N in HNO_3 is

$$\mathrm{Hybridisation}\:\mathrm{of}\:\mathrm{N}\:\mathrm{in}\:\mathrm{HNO}_{\mathrm{3}} \:\mathrm{is} \\ $$

Question Number 23408    Answers: 1   Comments: 0

Question Number 23402    Answers: 0   Comments: 2

Question Number 23394    Answers: 1   Comments: 0

Which is correct statement? (1) The entropy of the universe increases and tends towards the maximum value (2) All natural processes are irreversible (3) For reversible isolated processes, change of entropy is zero (4) For irreversible expansion of isolated processes, entropy change < 0

$$\mathrm{Which}\:\mathrm{is}\:\mathrm{correct}\:\mathrm{statement}? \\ $$$$\left(\mathrm{1}\right)\:\mathrm{The}\:\mathrm{entropy}\:\mathrm{of}\:\mathrm{the}\:\mathrm{universe}\:\mathrm{increases} \\ $$$$\mathrm{and}\:\mathrm{tends}\:\mathrm{towards}\:\mathrm{the}\:\mathrm{maximum} \\ $$$$\mathrm{value} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{All}\:\mathrm{natural}\:\mathrm{processes}\:\mathrm{are}\:\mathrm{irreversible} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{For}\:\mathrm{reversible}\:\mathrm{isolated}\:\mathrm{processes}, \\ $$$$\mathrm{change}\:\mathrm{of}\:\mathrm{entropy}\:\mathrm{is}\:\mathrm{zero} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{For}\:\mathrm{irreversible}\:\mathrm{expansion}\:\mathrm{of} \\ $$$$\mathrm{isolated}\:\mathrm{processes},\:\mathrm{entropy}\:\mathrm{change}\:<\:\mathrm{0} \\ $$

Question Number 23393    Answers: 0   Comments: 1

Show that volume of a region of space bounded by a boundary surface S is V= (1/3)∫∫_(S ) rcos θdA . θ being the angle between the position vector of a point P on the surface, and the outer normal to the surface at P. r is the distance of point P from origin.

$${Show}\:{that}\:{volume}\:{of}\:{a}\:{region} \\ $$$${of}\:{space}\:{bounded}\:{by}\:{a}\:{boundary} \\ $$$${surface}\:{S}\:{is}\:\:{V}=\:\frac{\mathrm{1}}{\mathrm{3}}\underset{{S}\:} {\int\int}{r}\mathrm{cos}\:\theta{dA}\:. \\ $$$$\theta\:{being}\:{the}\:{angle}\:{between}\:{the} \\ $$$${position}\:{vector}\:{of}\:{a}\:{point}\:{P}\:\:{on} \\ $$$${the}\:{surface},\:{and}\:{the}\:{outer}\:{normal} \\ $$$${to}\:{the}\:{surface}\:{at}\:{P}. \\ $$$${r}\:{is}\:{the}\:{distance}\:{of}\:{point}\:{P}\:{from} \\ $$$${origin}. \\ $$

Question Number 23390    Answers: 1   Comments: 2

Question Number 23399    Answers: 1   Comments: 4

Two blocks of masses 2 kg and 3 kg are kept on a smooth inclined plane. A constant force of magnitude 20 N is applied on 2 kg block parallel to the inclined. The contact force between the two blocks is

$$\mathrm{Two}\:\mathrm{blocks}\:\mathrm{of}\:\mathrm{masses}\:\mathrm{2}\:\mathrm{kg}\:\mathrm{and}\:\mathrm{3}\:\mathrm{kg} \\ $$$$\mathrm{are}\:\mathrm{kept}\:\mathrm{on}\:\mathrm{a}\:\mathrm{smooth}\:\mathrm{inclined}\:\mathrm{plane}. \\ $$$$\mathrm{A}\:\mathrm{constant}\:\mathrm{force}\:\mathrm{of}\:\mathrm{magnitude}\:\mathrm{20}\:\mathrm{N}\:\mathrm{is} \\ $$$$\mathrm{applied}\:\mathrm{on}\:\mathrm{2}\:\mathrm{kg}\:\mathrm{block}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{inclined}.\:\mathrm{The}\:\mathrm{contact}\:\mathrm{force}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{two}\:\mathrm{blocks}\:\mathrm{is} \\ $$

Question Number 23381    Answers: 1   Comments: 0

A women swimming upstream is not moving with respect to the ground. Is she doing any work, if she stops swimming and merely floats is work done on her?

$$\mathrm{A}\:\mathrm{women}\:\mathrm{swimming}\:\mathrm{upstream}\:\mathrm{is}\:\mathrm{not} \\ $$$$\mathrm{moving}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{the}\:\mathrm{ground}.\:\mathrm{Is} \\ $$$$\mathrm{she}\:\mathrm{doing}\:\mathrm{any}\:\mathrm{work},\:\mathrm{if}\:\mathrm{she}\:\mathrm{stops} \\ $$$$\mathrm{swimming}\:\mathrm{and}\:\mathrm{merely}\:\mathrm{floats}\:\mathrm{is}\:\mathrm{work} \\ $$$$\mathrm{done}\:\mathrm{on}\:\mathrm{her}? \\ $$

Question Number 23385    Answers: 0   Comments: 1

Question Number 23369    Answers: 1   Comments: 0

Which of the following pair would correct inequality for standard molar entropy? (1) NO(g) < NO_2 (g) (2) C_2 H_2 (g) > C_2 H_6 (g) (3) CH_3 COOH (l) < HCOOH (l) (4) CO_2 (g) < CO(g)

$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{pair}\:\mathrm{would} \\ $$$$\mathrm{correct}\:\mathrm{inequality}\:\mathrm{for}\:\mathrm{standard}\:\mathrm{molar} \\ $$$$\mathrm{entropy}? \\ $$$$\left(\mathrm{1}\right)\:\mathrm{NO}\left(\mathrm{g}\right)\:<\:\mathrm{NO}_{\mathrm{2}} \left(\mathrm{g}\right) \\ $$$$\left(\mathrm{2}\right)\:\mathrm{C}_{\mathrm{2}} \mathrm{H}_{\mathrm{2}} \left(\mathrm{g}\right)\:>\:\mathrm{C}_{\mathrm{2}} \mathrm{H}_{\mathrm{6}} \left(\mathrm{g}\right) \\ $$$$\left(\mathrm{3}\right)\:\mathrm{CH}_{\mathrm{3}} \mathrm{COOH}\:\left(\mathrm{l}\right)\:<\:\mathrm{HCOOH}\:\left(\mathrm{l}\right) \\ $$$$\left(\mathrm{4}\right)\:\mathrm{CO}_{\mathrm{2}} \left(\mathrm{g}\right)\:<\:\mathrm{CO}\left(\mathrm{g}\right) \\ $$

  Pg 1852      Pg 1853      Pg 1854      Pg 1855      Pg 1856      Pg 1857      Pg 1858      Pg 1859      Pg 1860      Pg 1861   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com