Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1854

Question Number 12753    Answers: 1   Comments: 0

evaluate ∫(√((sin x)))dx

$${evaluate}\:\int\sqrt{\left(\mathrm{sin}\:{x}\right)}{dx} \\ $$

Question Number 12752    Answers: 0   Comments: 0

Let V and W be 4 dimensional subspaces of a 7 dimensional vector space X. Which of the following CANNOT be the dimension of the subspace V∩W. (A) 0 (B) 1 (C) 2 (D) 3 (E) 4

$$\mathrm{Let}\:\mathrm{V}\:\mathrm{and}\:\mathrm{W}\:\mathrm{be}\:\mathrm{4}\:\mathrm{dimensional}\:\mathrm{subspaces}\:\mathrm{of}\:\mathrm{a}\:\mathrm{7}\:\mathrm{dimensional}\:\mathrm{vector}\:\mathrm{space}\:\mathrm{X}. \\ $$$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{CANNOT}\:\mathrm{be}\:\mathrm{the}\:\mathrm{dimension}\:\mathrm{of}\:\mathrm{the}\:\mathrm{subspace}\:\mathrm{V}\cap\mathrm{W}. \\ $$$$\left(\mathrm{A}\right)\:\mathrm{0}\:\left(\mathrm{B}\right)\:\mathrm{1}\:\left(\mathrm{C}\right)\:\mathrm{2}\:\left(\mathrm{D}\right)\:\mathrm{3}\:\left(\mathrm{E}\right)\:\mathrm{4} \\ $$

Question Number 12744    Answers: 1   Comments: 0

∫_( e^(−3) ) ^( e^(−2) ) (1/((x)log(x))) dx = ?

$$\int_{\:\mathrm{e}^{−\mathrm{3}} } ^{\:\mathrm{e}^{−\mathrm{2}} } \:\:\frac{\mathrm{1}}{\left(\mathrm{x}\right)\mathrm{log}\left(\mathrm{x}\right)}\:\mathrm{dx}\:\:=\:\:? \\ $$

Question Number 12743    Answers: 2   Comments: 0

What is the area of eqilateral triangle whose inscribed circle has a radius 2

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{eqilateral}\:\mathrm{triangle}\:\mathrm{whose}\:\mathrm{inscribed}\:\mathrm{circle}\:\mathrm{has}\:\mathrm{a}\:\mathrm{radius}\:\mathrm{2} \\ $$

Question Number 12742    Answers: 1   Comments: 0

Prove that ∫ (dx/((x +1)^2 (√(x^2 + 2x +2)))) = ((−(√(x^2 + 2x + 2)))/(x + 1)) + C

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\int\:\frac{{dx}}{\left({x}\:+\mathrm{1}\right)^{\mathrm{2}} \:\sqrt{{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:+\mathrm{2}}}\:=\:\frac{−\sqrt{{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:+\:\mathrm{2}}}{{x}\:+\:\mathrm{1}}\:+\:{C} \\ $$

Question Number 12740    Answers: 1   Comments: 0

∫∣x∣ dx

$$\int\mid\mathrm{x}\mid\:\mathrm{dx} \\ $$

Question Number 12732    Answers: 4   Comments: 0

lim_(x→0) (((√x) − x)/((√x) + x))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{x}}\:−\:{x}}{\sqrt{{x}}\:+\:{x}} \\ $$

Question Number 12728    Answers: 0   Comments: 0

x^n + ca^x = k c, a, n, k constant x = F(n, a, c, k) (solve for x) I will try make x^n = k − θ and ca^x = θ, but, if someone can help, please!

$${x}^{{n}} \:+\:{ca}^{{x}} \:=\:{k}\:\:\:\:\:\:\:\:\:\:{c},\:{a},\:{n},\:{k}\:\mathrm{constant} \\ $$$${x}\:=\:{F}\left({n},\:{a},\:{c},\:{k}\right)\:\:\left(\boldsymbol{{solve}}\:\boldsymbol{{for}}\:\boldsymbol{{x}}\right) \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{try}\:\mathrm{make}\:{x}^{{n}} \:=\:{k}\:−\:\theta\:\mathrm{and}\:{ca}^{{x}} \:=\:\theta, \\ $$$$\mathrm{but},\:\mathrm{if}\:\mathrm{someone}\:\mathrm{can}\:\mathrm{help},\:{please}! \\ $$

Question Number 12725    Answers: 3   Comments: 4

Question Number 12724    Answers: 1   Comments: 0

Question Number 12714    Answers: 0   Comments: 1

Question Number 12713    Answers: 1   Comments: 1

Q. 𝛉 = tan^(−1) 4/3

$$\boldsymbol{{Q}}.\:\boldsymbol{\theta}\:=\:\mathrm{tan}^{−\mathrm{1}} \:\:\mathrm{4}/\mathrm{3}\: \\ $$$$ \\ $$

Question Number 12708    Answers: 0   Comments: 0

what′s values 𝛂. y=2e^x −𝛂e^(−x) +(2𝛂+1)x−3 will feature all of the outlets growing.

$$\boldsymbol{\mathrm{what}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{values}}\:\:\boldsymbol{\alpha}. \\ $$$$\boldsymbol{\mathrm{y}}=\mathrm{2}\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} −\boldsymbol{\alpha\mathrm{e}}^{−\boldsymbol{\mathrm{x}}} +\left(\mathrm{2}\boldsymbol{\alpha}+\mathrm{1}\right)\boldsymbol{\mathrm{x}}−\mathrm{3} \\ $$$$\boldsymbol{\mathrm{will}}\:\:\boldsymbol{\mathrm{feature}}\:\:\boldsymbol{\mathrm{all}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{outlets}} \\ $$$$\boldsymbol{\mathrm{growing}}. \\ $$

Question Number 12705    Answers: 1   Comments: 0

this y=sin(x/2) find the range of the function.

$$\boldsymbol{\mathrm{this}}\:\:\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{sin}}\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\:\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{range}}\:\:\boldsymbol{\mathrm{of}} \\ $$$$\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{function}}. \\ $$

Question Number 12703    Answers: 1   Comments: 0

this ∮(x)=((lnx^2 )/(1+ln^2 x)) find the range of the function.

$$\boldsymbol{\mathrm{this}}\:\:\oint\left(\boldsymbol{\mathrm{x}}\right)=\frac{\boldsymbol{\mathrm{lnx}}^{\mathrm{2}} }{\mathrm{1}+\boldsymbol{\mathrm{ln}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}}\:\:\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{range}}\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{function}}. \\ $$

Question Number 12702    Answers: 1   Comments: 0

find ∫cos^2 2x dx

$${find}\:\int{cos}^{\mathrm{2}} \mathrm{2}{x}\:{dx} \\ $$

Question Number 12698    Answers: 0   Comments: 0

Given A^((−1)) = [((0.5 3)),((4 2)) ] find (A^2 )

$$\mathrm{Given}\:\:\:\mathrm{A}^{\left(−\mathrm{1}\right)} =\begin{bmatrix}{\mathrm{0}.\mathrm{5}\:\:\:\:\:\:\mathrm{3}}\\{\mathrm{4}\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\end{bmatrix} \\ $$$$\mathrm{find}\:\left(\mathrm{A}^{\mathrm{2}} \right) \\ $$

Question Number 12697    Answers: 1   Comments: 0

y=∣x−2∣+2x−3x^2 find the largest values of the function.

$$\boldsymbol{\mathrm{y}}=\mid\boldsymbol{\mathrm{x}}−\mathrm{2}\mid+\mathrm{2}\boldsymbol{\mathrm{x}}−\mathrm{3}\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:\:\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{largest}}\:\:\boldsymbol{\mathrm{values}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{function}}. \\ $$

Question Number 12704    Answers: 1   Comments: 0

y=sin2x−x (x∈[0;𝛑]) find the range of the function.

$$\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{sin}}\mathrm{2}\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{x}}\:\:\left(\boldsymbol{\mathrm{x}}\in\left[\mathrm{0};\boldsymbol{\pi}\right]\right)\:\:\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{range}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{function}}. \\ $$

Question Number 12694    Answers: 0   Comments: 0

∮(x)=9^x +5×3^(−2x) the feature set of values.

$$\oint\left(\boldsymbol{\mathrm{x}}\right)=\mathrm{9}^{\boldsymbol{\mathrm{x}}} +\mathrm{5}×\mathrm{3}^{−\mathrm{2}\boldsymbol{\mathrm{x}}} \:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{feature}} \\ $$$$\boldsymbol{\mathrm{set}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{values}}. \\ $$

Question Number 12688    Answers: 1   Comments: 0

prove (((sin(x+y))/(cos xcos y)))=tan x+tan y

$$\mathrm{prove}\: \\ $$$$\left(\frac{\mathrm{sin}\left(\mathrm{x}+\mathrm{y}\right)}{\mathrm{cos}\:{x}\mathrm{cos}\:{y}}\right)=\mathrm{tan}\:{x}+\mathrm{tan}\:{y} \\ $$

Question Number 12683    Answers: 1   Comments: 0

A coil of inductance 0.12Hz and resistance 4 Ω is connected across a 240 v, 50 Hz is supplied . Calculate the current on the load (π = 3.142).

$$\mathrm{A}\:\mathrm{coil}\:\mathrm{of}\:\mathrm{inductance}\:\mathrm{0}.\mathrm{12Hz}\:\mathrm{and}\:\mathrm{resistance}\:\mathrm{4}\:\Omega\:\mathrm{is}\:\mathrm{connected}\:\mathrm{across}\:\mathrm{a}\:\mathrm{240}\:\mathrm{v},\: \\ $$$$\mathrm{50}\:\mathrm{Hz}\:\mathrm{is}\:\mathrm{supplied}\:.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{current}\:\mathrm{on}\:\mathrm{the}\:\mathrm{load}\:\left(\pi\:=\:\mathrm{3}.\mathrm{142}\right). \\ $$

Question Number 12682    Answers: 1   Comments: 0

Question Number 12684    Answers: 1   Comments: 0

Question Number 12672    Answers: 1   Comments: 0

Question Number 12660    Answers: 0   Comments: 0

  Pg 1849      Pg 1850      Pg 1851      Pg 1852      Pg 1853      Pg 1854      Pg 1855      Pg 1856      Pg 1857      Pg 1858   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com