Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1851

Question Number 25536    Answers: 1   Comments: 0

If x = 2sec(3t) and y = 4tan(3t), Show that y = 4(x^2 − 4)

$$\mathrm{If}\:\:\:\mathrm{x}\:=\:\mathrm{2sec}\left(\mathrm{3t}\right)\:\:\mathrm{and}\:\:\mathrm{y}\:=\:\mathrm{4tan}\left(\mathrm{3t}\right),\:\:\:\mathrm{Show}\:\mathrm{that}\:\:\:\:\mathrm{y}\:=\:\mathrm{4}\left(\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{4}\right) \\ $$

Question Number 25533    Answers: 1   Comments: 0

Three sets of beans l, m, and n are sold for5 for $5.00, $15.00 and $17.50 respectively per kg. If they are mixed in the ratio of 1:3:2, what is the cost per kg of the mixture?×

$${Three}\:{sets}\:{of}\:{beans}\:{l},\:{m},\:{and}\:{n}\:{are}\:{sold}\:{for}\mathrm{5} \\ $$$${for}\:\$\mathrm{5}.\mathrm{00},\:\$\mathrm{15}.\mathrm{00}\:{and}\:\$\mathrm{17}.\mathrm{50}\:{respectively} \\ $$$${per}\:{kg}.\:{If}\:{they}\:{are}\:{mixed}\:{in}\:{the}\:{ratio}\:{of} \\ $$$$\mathrm{1}:\mathrm{3}:\mathrm{2},\:{what}\:{is}\:{the}\:{cost}\:{per}\:{kg}\:{of}\:{the}\:{mixture}?× \\ $$

Question Number 25716    Answers: 0   Comments: 0

Question Number 25519    Answers: 2   Comments: 1

Question Number 25520    Answers: 2   Comments: 1

Question Number 25509    Answers: 0   Comments: 1

Question Number 25521    Answers: 1   Comments: 0

Question Number 25528    Answers: 2   Comments: 1

Question Number 25488    Answers: 2   Comments: 3

Question Number 25495    Answers: 0   Comments: 1

Question Number 25738    Answers: 1   Comments: 0

Question Number 25736    Answers: 0   Comments: 0

Question Number 25483    Answers: 1   Comments: 0

valute ∫(1/((x−1)^2 ))(/((x^2 +4)))dx

$${valute}\:\int\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\frac{}{\left({x}^{\mathrm{2}} +\mathrm{4}\right)}{dx} \\ $$

Question Number 25479    Answers: 1   Comments: 0

Question Number 25482    Answers: 1   Comments: 3

Question Number 25477    Answers: 0   Comments: 0

((1+x)/2)=x−3+(5/x) LCM=( 2)(x) multiply each step by 2x (2)(x)(((1+x)/2))=(2)(x)(x−3)+(2)(x)((5/x)) (x)(1+x)=2x(x−3)+(2)(5) x+x^2 =2x^2 −6x+10 move all equations to LHS 2x^2 −x^2 −6x−x+10=0 x^2 −5x+10=0 x=((5±(√(25−40)))/2)=((5±(√(−15)))/2)=(1/2)(5±i(√(15)))

$$\frac{\mathrm{1}+{x}}{\mathrm{2}}={x}−\mathrm{3}+\frac{\mathrm{5}}{{x}} \\ $$$${LCM}=\left(\:\mathrm{2}\right)\left({x}\right) \\ $$$${multiply}\:{each}\:{step}\:{by}\:\mathrm{2}{x} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\left({x}\right)\left(\frac{\mathrm{1}+{x}}{\mathrm{2}}\right)=\left(\mathrm{2}\right)\left({x}\right)\left({x}−\mathrm{3}\right)+\left(\mathrm{2}\right)\left({x}\right)\left(\frac{\mathrm{5}}{{x}}\right) \\ $$$$ \\ $$$$\left({x}\right)\left(\mathrm{1}+{x}\right)=\mathrm{2}{x}\left({x}−\mathrm{3}\right)+\left(\mathrm{2}\right)\left(\mathrm{5}\right)\:\:\:\:\:\:\:\:\:\:\: \\ $$$${x}+{x}^{\mathrm{2}} =\mathrm{2}{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{10} \\ $$$${move}\:{all}\:{equations}\:{to}\:{LHS} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} −{x}^{\mathrm{2}} −\mathrm{6}{x}−{x}+\mathrm{10}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{10}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{5}\pm\sqrt{\mathrm{25}−\mathrm{40}}}{\mathrm{2}}=\frac{\mathrm{5}\pm\sqrt{−\mathrm{15}}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{5}\pm{i}\sqrt{\mathrm{15}}\right) \\ $$

Question Number 25476    Answers: 1   Comments: 0

convert 1234.24_8 to base 10

$${convert}\:\mathrm{1234}.\mathrm{24}_{\mathrm{8}} \:{to}\:{base}\:\mathrm{10} \\ $$

Question Number 25475    Answers: 0   Comments: 0

Question Number 25474    Answers: 0   Comments: 0

Question Number 25472    Answers: 1   Comments: 0

slolve the definite integral∫_1^ ^2 (1/x)dxusingg> ng trapezoidal rule with 4 sub intervals hencefind an approximate value of ln 2.

$${slolve}\:{the}\:{definite}\:{integral}\int_{\mathrm{1}^{} } ^{\mathrm{2}} \frac{\mathrm{1}}{{x}}{dxusingg}>\:\:\:{ng}\: \\ $$$${trapezoidal}\:{rule}\:{with}\:\mathrm{4}\:{sub}\:{intervals}\: \\ $$$${hencefind}\:{an}\:{approximate}\:{value}\:{of}\: \\ $$$${ln}\:\mathrm{2}. \\ $$

Question Number 25468    Answers: 0   Comments: 0

Question Number 25460    Answers: 1   Comments: 2

Question Number 25457    Answers: 1   Comments: 0

Question Number 26949    Answers: 0   Comments: 2

∫_0 ^1 ∫_0 ^1 (1/(1 + xy)) dx dy

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{1}}{\mathrm{1}\:+\:{xy}}\:{dx}\:{dy} \\ $$

Question Number 25447    Answers: 0   Comments: 1

Question Number 25446    Answers: 0   Comments: 0

  Pg 1846      Pg 1847      Pg 1848      Pg 1849      Pg 1850      Pg 1851      Pg 1852      Pg 1853      Pg 1854      Pg 1855   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com