Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1851

Question Number 13128    Answers: 0   Comments: 0

If [x] stands for the greatest integer function, the value of ∫_( 4) ^( 10) (([x^2 ])/([x^2 −28x+196]+[x^2 ])) dx is

$$\mathrm{If}\:\:\left[{x}\right]\:\mathrm{stands}\:\mathrm{for}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{integer} \\ $$$$\mathrm{function},\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\: \\ $$$$\underset{\:\mathrm{4}} {\overset{\:\:\:\:\mathrm{10}} {\int}}\:\frac{\left[{x}^{\mathrm{2}} \right]}{\left[{x}^{\mathrm{2}} −\mathrm{28}{x}+\mathrm{196}\right]+\left[{x}^{\mathrm{2}} \right]}\:{dx}\:\mathrm{is} \\ $$

Question Number 13127    Answers: 0   Comments: 0

Question Number 13121    Answers: 1   Comments: 0

Find the value of : (2/(15)) + (2/(35)) + (2/(63)) + (2/(99)) + ... + (2/(9999))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\::\:\:\frac{\mathrm{2}}{\mathrm{15}}\:+\:\frac{\mathrm{2}}{\mathrm{35}}\:+\:\frac{\mathrm{2}}{\mathrm{63}}\:+\:\frac{\mathrm{2}}{\mathrm{99}}\:+\:...\:+\:\frac{\mathrm{2}}{\mathrm{9999}} \\ $$

Question Number 13117    Answers: 1   Comments: 0

Question Number 13107    Answers: 1   Comments: 0

A man moves 20m north then 12m east and finally 15m south. His displacement from the starting point is ?

$$\mathrm{A}\:\mathrm{man}\:\mathrm{moves}\:\mathrm{20m}\:\mathrm{north}\:\mathrm{then}\:\mathrm{12m}\:\mathrm{east}\:\mathrm{and}\:\mathrm{finally}\:\mathrm{15m}\:\mathrm{south}.\:\:\mathrm{His}\:\mathrm{displacement} \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{starting}\:\mathrm{point}\:\mathrm{is}\:? \\ $$

Question Number 13103    Answers: 2   Comments: 0

∫_( −1) ^2 (( ∣ x ∣ )/x) dx =

$$\:\underset{\:−\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\frac{\:\mid\:{x}\:\mid\:}{{x}}\:{dx}\:=\: \\ $$

Question Number 13102    Answers: 0   Comments: 4

Find the sum of the nth term : 1^6 + 2^6 + 3^6 + 4^6 + ... + n^6

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}\:\::\:\:\mathrm{1}^{\mathrm{6}} \:+\:\mathrm{2}^{\mathrm{6}} \:+\:\mathrm{3}^{\mathrm{6}} \:+\:\mathrm{4}^{\mathrm{6}} \:+\:...\:+\:\mathrm{n}^{\mathrm{6}} \\ $$

Question Number 13099    Answers: 2   Comments: 0

If f(x + 5) = g(2x −1) Find 2f^(−1) (x) (A) g^(−1) (x) + 11 (D) g^(−1) (x/2) + 6 (B) g^(−1) (x) + 9 (E) g^(−1) (2x) + 6 (C) g^(−1) (x) + 6

$$\mathrm{If}\:{f}\left({x}\:+\:\mathrm{5}\right)\:=\:{g}\left(\mathrm{2}{x}\:−\mathrm{1}\right) \\ $$$$\mathrm{Find}\:\mathrm{2}{f}^{−\mathrm{1}} \left({x}\right) \\ $$$$ \\ $$$$\left(\mathrm{A}\right)\:{g}^{−\mathrm{1}} \left({x}\right)\:+\:\mathrm{11}\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:{g}^{−\mathrm{1}} \left({x}/\mathrm{2}\right)\:+\:\mathrm{6} \\ $$$$\left(\mathrm{B}\right)\:{g}^{−\mathrm{1}} \left({x}\right)\:+\:\mathrm{9}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{E}\right)\:{g}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)\:+\:\mathrm{6} \\ $$$$\left(\mathrm{C}\right)\:{g}^{−\mathrm{1}} \left({x}\right)\:+\:\mathrm{6} \\ $$

Question Number 13098    Answers: 1   Comments: 0

Question Number 13097    Answers: 1   Comments: 0

S=Σ_(x_2 =1) ^x_1 Σ_(x_3 =1) ^x_2 ∙∙∙Σ_(x_n =1) ^x_(n−1) Σ_(t=1) ^x_n t Can you evaluate S?

$${S}=\underset{{x}_{\mathrm{2}} =\mathrm{1}} {\overset{{x}_{\mathrm{1}} } {\sum}}\underset{{x}_{\mathrm{3}} =\mathrm{1}} {\overset{{x}_{\mathrm{2}} } {\sum}}\centerdot\centerdot\centerdot\underset{{x}_{{n}} =\mathrm{1}} {\overset{{x}_{{n}−\mathrm{1}} } {\sum}}\underset{{t}=\mathrm{1}} {\overset{{x}_{{n}} } {\sum}}{t} \\ $$$$\mathrm{Can}\:\mathrm{you}\:\mathrm{evaluate}\:{S}? \\ $$

Question Number 13091    Answers: 1   Comments: 0

A motor car moves with a velocity of 20m/s on a rough horizontal road and covers a displacement of 50m. Find the coefficient of dynamic friction between the tyre and the ground (g = 10m/s^2 ).

$$\mathrm{A}\:\mathrm{motor}\:\mathrm{car}\:\mathrm{moves}\:\mathrm{with}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{20m}/\mathrm{s}\:\mathrm{on}\:\mathrm{a}\:\mathrm{rough}\:\mathrm{horizontal}\:\mathrm{road}\:\mathrm{and} \\ $$$$\mathrm{covers}\:\mathrm{a}\:\mathrm{displacement}\:\mathrm{of}\:\mathrm{50m}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{dynamic}\:\mathrm{friction}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{tyre}\:\mathrm{and}\:\mathrm{the}\:\mathrm{ground}\:\:\left(\mathrm{g}\:=\:\mathrm{10m}/\mathrm{s}^{\mathrm{2}} \right). \\ $$

Question Number 13081    Answers: 2   Comments: 0

{ ((x+y+z=[1]_5 )),((xy=[2]_5 )),((yz=[1]_5 )) :} Solve system on Z_5

$$\begin{cases}{{x}+{y}+{z}=\left[\mathrm{1}\right]_{\mathrm{5}} }\\{{xy}=\left[\mathrm{2}\right]_{\mathrm{5}} }\\{{yz}=\left[\mathrm{1}\right]_{\mathrm{5}} }\end{cases} \\ $$$${Solve}\:{system}\:{on}\:\mathbb{Z}_{\mathrm{5}} \\ $$

Question Number 13075    Answers: 0   Comments: 5

S(x) is the sum of 49 terms of AP The first term is (1/2)x^3 and the difference is (7 − x) If S(x) maximum, the value of 10^(th) term is ...

$${S}\left({x}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{49}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{AP} \\ $$$$\mathrm{The}\:\mathrm{first}\:\mathrm{term}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{3}} \:\mathrm{and}\:\mathrm{the}\:\mathrm{difference} \\ $$$$\mathrm{is}\:\left(\mathrm{7}\:−\:{x}\right) \\ $$$$\mathrm{If}\:{S}\left({x}\right)\:\mathrm{maximum},\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{10}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{is}\:... \\ $$

Question Number 13059    Answers: 2   Comments: 0

please help for ∫_(−3π ) ^( 3π) sin^(2009) x dx

$$\mathrm{please}\:\mathrm{help}\:\mathrm{for} \\ $$$$\int_{−\mathrm{3}\pi\:} ^{\:\:\:\mathrm{3}\pi} \mathrm{sin}^{\mathrm{2009}} \mathrm{x}\:\mathrm{dx} \\ $$

Question Number 13054    Answers: 1   Comments: 0

An object is placed between a converging lens and a plane mirror. Explain how two real images of the object may be produced by the system. If the focal length of the lens is 15cm and the object is 20cm from both the lens and the mirror.Calculate the distance of the two images from the lens.. pls help me with this....

$$\mathrm{An}\:\mathrm{object}\:\mathrm{is}\:\mathrm{placed}\:\mathrm{between}\:\mathrm{a}\: \\ $$$$\mathrm{converging}\:\mathrm{lens}\:\mathrm{and}\:\mathrm{a}\:\mathrm{plane}\:\mathrm{mirror}. \\ $$$$\mathrm{Explain}\:\mathrm{how}\:\mathrm{two}\:\mathrm{real}\:\mathrm{images}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{object}\:\mathrm{may}\:\mathrm{be}\:\mathrm{produced}\:\mathrm{by}\:\mathrm{the}\: \\ $$$$\mathrm{system}. \\ $$$$\mathrm{If}\:\mathrm{the}\:\mathrm{focal}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{lens}\:\mathrm{is}\:\mathrm{15cm} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{object}\:\mathrm{is}\:\mathrm{20cm}\:\mathrm{from}\:\mathrm{both}\: \\ $$$$\mathrm{the}\:\mathrm{lens}\:\mathrm{and}\:\mathrm{the}\:\mathrm{mirror}.\mathrm{Calculate} \\ $$$$\mathrm{the}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}\:\mathrm{images}\: \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{lens}.. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\mathrm{pls}\:\mathrm{help}\:\mathrm{me}\:\mathrm{with}\:\mathrm{this}....\: \\ $$

Question Number 13049    Answers: 1   Comments: 0

Two charges q_1 = 10 μC and q_2 = 5 μC are placed on the axis at A (10, 0) cm and (20, 0) cm respectively. Determine a position between the two charges where the electric field intensity is 0.

$$\mathrm{Two}\:\mathrm{charges}\:\mathrm{q}_{\mathrm{1}} \:=\:\mathrm{10}\:\mu\mathrm{C}\:\mathrm{and}\:\:\mathrm{q}_{\mathrm{2}} \:=\:\mathrm{5}\:\mu\mathrm{C}\:\:\mathrm{are}\:\mathrm{placed}\:\mathrm{on}\:\mathrm{the}\:\mathrm{axis}\:\mathrm{at}\:\mathrm{A}\:\left(\mathrm{10},\:\mathrm{0}\right)\:\mathrm{cm} \\ $$$$\mathrm{and}\:\left(\mathrm{20},\:\mathrm{0}\right)\:\mathrm{cm}\:\:\mathrm{respectively}.\:\mathrm{Determine}\:\mathrm{a}\:\mathrm{position}\:\mathrm{between}\:\mathrm{the}\:\mathrm{two}\:\mathrm{charges} \\ $$$$\mathrm{where}\:\mathrm{the}\:\mathrm{electric}\:\mathrm{field}\:\mathrm{intensity}\:\mathrm{is}\:\mathrm{0}.\: \\ $$

Question Number 13068    Answers: 2   Comments: 0

If y = (x)^(1/3) Find (dy/dx) from the first principle

$$\mathrm{If}\:\:\:\mathrm{y}\:=\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}}\:\:\:\:\:\mathrm{Find}\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:\:\mathrm{from}\:\mathrm{the}\:\mathrm{first}\:\mathrm{principle} \\ $$

Question Number 13067    Answers: 0   Comments: 4

Question Number 13040    Answers: 1   Comments: 0

which is heavier,HOT water or COLD water? pls give explanation Thanks

$$\mathrm{which}\:\mathrm{is}\:\mathrm{heavier},\mathrm{HOT}\:\mathrm{water}\:\mathrm{or}\: \\ $$$$\mathrm{COLD}\:\mathrm{water}?\:\:\mathrm{pls}\:\mathrm{give}\:\mathrm{explanation} \\ $$$$ \\ $$$$\mathrm{Thanks} \\ $$

Question Number 13034    Answers: 0   Comments: 4

MrW1 Before we concluded that: Φ=Σ_(x=0) ^m Σ_(y=0) ^n (1−sgn(x−x′)) If you do: Σ_(x=0) ^1 Σ_(y=0) ^1 (1−sgn(x−x′)) =Σ_(x=0) ^1 Σ_(y=0) ^1 (1−sgn(x−((LCM(x,y))/y))) =(1−sgn(0−((LCM(0,0))/0)))+(1−sgn(1−((LCM(1,0))/0)) +(1−sgn(0−((LCM(0,1))/1)))+(1−sgn(1−((LCM(1,1))/1)) =(1−sgn(−((LCM(0,0))/0)))+(1−sgn(1−(0/0))) +(1−sgn(−(0/1)))+(1−sgn(1−(1/1))) =????

$$\mathrm{MrW1} \\ $$$$\: \\ $$$$\mathrm{Before}\:\mathrm{we}\:\mathrm{concluded}\:\mathrm{that}: \\ $$$$\Phi=\underset{{x}=\mathrm{0}} {\overset{{m}} {\sum}}\underset{{y}=\mathrm{0}} {\overset{{n}} {\sum}}\left(\mathrm{1}−\mathrm{sgn}\left({x}−{x}'\right)\right) \\ $$$$\: \\ $$$$\mathrm{If}\:\mathrm{you}\:\mathrm{do}: \\ $$$$\underset{{x}=\mathrm{0}} {\overset{\mathrm{1}} {\sum}}\underset{{y}=\mathrm{0}} {\overset{\mathrm{1}} {\sum}}\left(\mathrm{1}−\mathrm{sgn}\left({x}−{x}'\right)\right) \\ $$$$=\underset{{x}=\mathrm{0}} {\overset{\mathrm{1}} {\sum}}\underset{{y}=\mathrm{0}} {\overset{\mathrm{1}} {\sum}}\left(\mathrm{1}−\mathrm{sgn}\left({x}−\frac{\mathrm{LCM}\left({x},{y}\right)}{{y}}\right)\right) \\ $$$$=\left(\mathrm{1}−\mathrm{sgn}\left(\mathrm{0}−\frac{\mathrm{LCM}\left(\mathrm{0},\mathrm{0}\right)}{\mathrm{0}}\right)\right)+\left(\mathrm{1}−\mathrm{sgn}\left(\mathrm{1}−\frac{\mathrm{LCM}\left(\mathrm{1},\mathrm{0}\right)}{\mathrm{0}}\right)\right. \\ $$$$+\left(\mathrm{1}−\mathrm{sgn}\left(\mathrm{0}−\frac{\mathrm{LCM}\left(\mathrm{0},\mathrm{1}\right)}{\mathrm{1}}\right)\right)+\left(\mathrm{1}−\mathrm{sgn}\left(\mathrm{1}−\frac{\mathrm{LCM}\left(\mathrm{1},\mathrm{1}\right)}{\mathrm{1}}\right)\right. \\ $$$$\: \\ $$$$=\left(\mathrm{1}−\mathrm{sgn}\left(−\frac{\mathrm{LCM}\left(\mathrm{0},\mathrm{0}\right)}{\mathrm{0}}\right)\right)+\left(\mathrm{1}−\mathrm{sgn}\left(\mathrm{1}−\frac{\mathrm{0}}{\mathrm{0}}\right)\right) \\ $$$$+\left(\mathrm{1}−\mathrm{sgn}\left(−\frac{\mathrm{0}}{\mathrm{1}}\right)\right)+\left(\mathrm{1}−\mathrm{sgn}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}}\right)\right) \\ $$$$\: \\ $$$$=???? \\ $$

Question Number 13031    Answers: 1   Comments: 0

MrW1 Going off of Q12883 How many unique angles angles in Z^3 ? What about Z^n ?

$$\mathrm{MrW1} \\ $$$$ \\ $$$$\mathrm{Going}\:\mathrm{off}\:\mathrm{of}\:\mathrm{Q12883} \\ $$$$\: \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{unique}\:\mathrm{angles}\:\mathrm{angles}\:\mathrm{in}\:\mathbb{Z}^{\mathrm{3}} ? \\ $$$$\mathrm{What}\:\mathrm{about}\:\mathbb{Z}^{{n}} ? \\ $$

Question Number 13030    Answers: 0   Comments: 1

Question Number 13029    Answers: 1   Comments: 1

Question Number 13025    Answers: 1   Comments: 1

Question Number 13012    Answers: 0   Comments: 2

Sir. MRV please i need the cubic equation formular. my phone has fault and i just restore it. please help me re send it. i really appreciate your effort sir. God bless you sir.

$${Sir}.\:{MRV}\:\:{please}\:\mathrm{i}\:\mathrm{need}\:{the}\:\mathrm{cubic}\:\mathrm{equation}\:\mathrm{formular}.\:\:\mathrm{my}\:\mathrm{phone}\:\mathrm{has}\:\mathrm{fault} \\ $$$$\mathrm{and}\:\mathrm{i}\:\mathrm{just}\:\mathrm{restore}\:\mathrm{it}.\:\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{re}\:\mathrm{send}\:\mathrm{it}.\:\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{effort} \\ $$$$\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Question Number 13011    Answers: 1   Comments: 0

lim_(x→∞) [5^x + 5^(3x) ]^(1/x) = ? please help

$$\mathrm{li}\underset{\mathrm{x}\rightarrow\infty} {\mathrm{m}}\left[\mathrm{5}^{\mathrm{x}} \:+\:\mathrm{5}^{\mathrm{3x}} \right]^{\frac{\mathrm{1}}{\mathrm{x}}} \:=\:? \\ $$$$\mathrm{please}\:\mathrm{help} \\ $$

  Pg 1846      Pg 1847      Pg 1848      Pg 1849      Pg 1850      Pg 1851      Pg 1852      Pg 1853      Pg 1854      Pg 1855   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com