Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1851

Question Number 24477    Answers: 1   Comments: 2

A particle moving horizonatally collides perpendiculrly at one end of a rod having equal mass and placed on a horizontal surface. The book says that particle will continue to move along the same direction regardless of value of e (coefficient of restitution). I did not understand the logic. please help.

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{moving}\:\mathrm{horizonatally} \\ $$$$\mathrm{collides}\:\mathrm{perpendiculrly}\:\mathrm{at}\:\mathrm{one}\:\mathrm{end} \\ $$$$\mathrm{of}\:\:\mathrm{a}\:\mathrm{rod}\:\mathrm{having}\:\mathrm{equal}\:\mathrm{mass}\:\mathrm{and} \\ $$$$\mathrm{placed}\:\mathrm{on}\:\mathrm{a}\:\mathrm{horizontal}\:\mathrm{surface}. \\ $$$$\mathrm{The}\:\mathrm{book}\:\mathrm{says}\:\mathrm{that}\:\mathrm{particle}\:\mathrm{will} \\ $$$$\mathrm{continue}\:\mathrm{to}\:\mathrm{move}\:\mathrm{along}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{direction}\:\mathrm{regardless}\:\mathrm{of}\:\mathrm{value}\:\mathrm{of} \\ $$$${e}\:\left(\mathrm{coefficient}\:\mathrm{of}\:\mathrm{restitution}\right). \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{did}\:\mathrm{not}\:\mathrm{understand}\:\mathrm{the}\:\mathrm{logic}. \\ $$$$\mathrm{please}\:\mathrm{help}. \\ $$

Question Number 24469    Answers: 0   Comments: 2

Let 2x + 3y + 4z = 9, x, y, z > 0 then the maximum value of (1 + x)^2 (2 + y)^3 (4 + z)^4 is

$$\mathrm{Let}\:\mathrm{2}{x}\:+\:\mathrm{3}{y}\:+\:\mathrm{4}{z}\:=\:\mathrm{9},\:{x},\:{y},\:{z}\:>\:\mathrm{0}\:\mathrm{then} \\ $$$$\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\left(\mathrm{1}\:+\:{x}\right)^{\mathrm{2}} \:\left(\mathrm{2}\:+\:{y}\right)^{\mathrm{3}} \\ $$$$\left(\mathrm{4}\:+\:{z}\right)^{\mathrm{4}} \:\mathrm{is} \\ $$

Question Number 24465    Answers: 0   Comments: 3

Two blocks of masses m_1 and m_2 are placed in contact with each other on a horizontal platform. The coefficient of friction between the platform and the two blocks is the same. The platform moves with an acceleration. The force of interaction between the blocks is

$$\mathrm{Two}\:\mathrm{blocks}\:\mathrm{of}\:\mathrm{masses}\:{m}_{\mathrm{1}} \:\mathrm{and}\:{m}_{\mathrm{2}} \:\mathrm{are} \\ $$$$\mathrm{placed}\:\mathrm{in}\:\mathrm{contact}\:\mathrm{with}\:\mathrm{each}\:\mathrm{other}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{horizontal}\:\mathrm{platform}.\:\mathrm{The}\:\mathrm{coefficient}\:\mathrm{of} \\ $$$$\mathrm{friction}\:\mathrm{between}\:\mathrm{the}\:\mathrm{platform}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{two}\:\mathrm{blocks}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}.\:\mathrm{The}\:\mathrm{platform} \\ $$$$\mathrm{moves}\:\mathrm{with}\:\mathrm{an}\:\mathrm{acceleration}.\:\mathrm{The}\:\mathrm{force} \\ $$$$\mathrm{of}\:\mathrm{interaction}\:\mathrm{between}\:\mathrm{the}\:\mathrm{blocks}\:\mathrm{is} \\ $$

Question Number 24460    Answers: 0   Comments: 3

A uniform rod of AB of mass m=1.12 kg and lengtj l=100cm is placed on a sharp support O such that AO=a=40cm. To keep the rod horizontal, its end A is ties with a thread. Calculate reaction of support O on the rod when the thread is burnt. (g=10 m∙s^(−2) )

$$\mathrm{A}\:\mathrm{uniform}\:\mathrm{rod}\:\mathrm{of}\:\mathrm{AB}\:\mathrm{of}\:\mathrm{mass} \\ $$$$\mathrm{m}=\mathrm{1}.\mathrm{12}\:\mathrm{kg}\:\mathrm{and}\:\mathrm{lengtj}\:\mathrm{l}=\mathrm{100cm}\:\mathrm{is} \\ $$$$\mathrm{placed}\:\mathrm{on}\:\mathrm{a}\:\mathrm{sharp}\:\mathrm{support}\:\mathrm{O}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{AO}={a}=\mathrm{40}{cm}.\:\mathrm{To}\:\mathrm{keep}\:\mathrm{the}\:\mathrm{rod} \\ $$$$\mathrm{horizontal},\:\mathrm{its}\:\mathrm{end}\:\mathrm{A}\:\mathrm{is}\:\mathrm{ties}\:\mathrm{with}\:\mathrm{a} \\ $$$$\mathrm{thread}.\:\mathrm{Calculate}\:\mathrm{reaction}\:\mathrm{of}\:\mathrm{support} \\ $$$$\mathrm{O}\:\mathrm{on}\:\mathrm{the}\:\mathrm{rod}\:\mathrm{when}\:\mathrm{the}\:\mathrm{thread}\:\mathrm{is}\:\mathrm{burnt}. \\ $$$$\left({g}=\mathrm{10}\:\mathrm{m}\centerdot\mathrm{s}^{−\mathrm{2}} \right) \\ $$

Question Number 24459    Answers: 2   Comments: 0

If the sides of a rectangle are increased each by 10%, find the % increase in its diagonal.

$$\mathrm{If}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{rectangle}\:\mathrm{are}\:\mathrm{increased} \\ $$$$\mathrm{each}\:\mathrm{by}\:\mathrm{10\%},\:\mathrm{find}\:\mathrm{the}\:\%\:\mathrm{increase}\:\mathrm{in}\:\mathrm{its} \\ $$$$\mathrm{diagonal}. \\ $$

Question Number 24456    Answers: 1   Comments: 0

The product of a monomial by a binomial is a

$${The}\:{product}\:{of}\:{a}\:{monomial}\:{by}\:{a}\:{binomial}\:{is}\:{a} \\ $$

Question Number 24434    Answers: 0   Comments: 0

Two cylindrical hollow drums of radii R and 2R, and of a common height h, are rotating with angular velocities ω (anti-clockwise) and ω (clockwise), respectively. Their axes, fixed are parallel and in a horizontal plane separated by (3R + δ). They are now brought in contact (δ → 0). (a) Show the frictional forces just after contact. (b) Identify forces and torques external to the system just after contact. (c) What would be the ratio of final angular velocities when friction ceases?

$$\mathrm{Two}\:\mathrm{cylindrical}\:\mathrm{hollow}\:\mathrm{drums}\:\mathrm{of}\:\mathrm{radii} \\ $$$${R}\:\mathrm{and}\:\mathrm{2}{R},\:\mathrm{and}\:\mathrm{of}\:\mathrm{a}\:\mathrm{common}\:\mathrm{height}\:{h}, \\ $$$$\mathrm{are}\:\mathrm{rotating}\:\mathrm{with}\:\mathrm{angular}\:\mathrm{velocities}\:\omega \\ $$$$\left(\mathrm{anti}-\mathrm{clockwise}\right)\:\mathrm{and}\:\omega\:\left(\mathrm{clockwise}\right), \\ $$$$\mathrm{respectively}.\:\mathrm{Their}\:\mathrm{axes},\:\mathrm{fixed}\:\mathrm{are} \\ $$$$\mathrm{parallel}\:\mathrm{and}\:\mathrm{in}\:\mathrm{a}\:\mathrm{horizontal}\:\mathrm{plane} \\ $$$$\mathrm{separated}\:\mathrm{by}\:\left(\mathrm{3}{R}\:+\:\delta\right).\:\mathrm{They}\:\mathrm{are}\:\mathrm{now} \\ $$$$\mathrm{brought}\:\mathrm{in}\:\mathrm{contact}\:\left(\delta\:\rightarrow\:\mathrm{0}\right). \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Show}\:\mathrm{the}\:\mathrm{frictional}\:\mathrm{forces}\:\mathrm{just}\:\mathrm{after} \\ $$$$\mathrm{contact}. \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Identify}\:\mathrm{forces}\:\mathrm{and}\:\mathrm{torques}\:\mathrm{external} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{system}\:\mathrm{just}\:\mathrm{after}\:\mathrm{contact}. \\ $$$$\left(\mathrm{c}\right)\:\mathrm{What}\:\mathrm{would}\:\mathrm{be}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{final} \\ $$$$\mathrm{angular}\:\mathrm{velocities}\:\mathrm{when}\:\mathrm{friction}\:\mathrm{ceases}? \\ $$

Question Number 24436    Answers: 0   Comments: 0

For a reversible reaction A ⇌ B. Find K_(eq) at 2727°C temperature. Given : Δ_r H° = −30 kJ mol^(−1) (at 2727°C) Δ_r S° = 10 JK^(−1) (at 2727°C) R = 8.314 JK^(−1) mol^(−1)

$$\mathrm{For}\:\mathrm{a}\:\mathrm{reversible}\:\mathrm{reaction}\:\mathrm{A}\:\rightleftharpoons\:\mathrm{B}.\:\mathrm{Find} \\ $$$$\mathrm{K}_{\mathrm{eq}} \:\mathrm{at}\:\mathrm{2727}°\mathrm{C}\:\mathrm{temperature}. \\ $$$$\mathrm{Given}\::\:\Delta_{\mathrm{r}} \mathrm{H}°\:=\:−\mathrm{30}\:\mathrm{kJ}\:\mathrm{mol}^{−\mathrm{1}} \:\left(\mathrm{at}\:\mathrm{2727}°\mathrm{C}\right) \\ $$$$\Delta_{\mathrm{r}} \mathrm{S}°\:=\:\mathrm{10}\:\mathrm{JK}^{−\mathrm{1}} \:\left(\mathrm{at}\:\mathrm{2727}°\mathrm{C}\right) \\ $$$$\mathrm{R}\:=\:\mathrm{8}.\mathrm{314}\:\mathrm{JK}^{−\mathrm{1}} \:\mathrm{mol}^{−\mathrm{1}} \\ $$

Question Number 24428    Answers: 1   Comments: 0

In a race on a track of a certain length, A beats B by 20 m. When A was 10 m ahead of the mid−point of the track B was 2 m behind it. Find the length of the track (in m).

$$\mathrm{In}\:\mathrm{a}\:\mathrm{race}\:\mathrm{on}\:\mathrm{a}\:\mathrm{track}\:\:\mathrm{of}\:\mathrm{a}\:\mathrm{certain}\:\mathrm{length}, \\ $$$$\mathrm{A}\:\:\mathrm{beats}\:\mathrm{B}\:\mathrm{by}\:\mathrm{20}\:\mathrm{m}.\:\mathrm{When}\:\mathrm{A}\:\mathrm{was}\:\mathrm{10}\:\mathrm{m} \\ $$$$\mathrm{ahead}\:\mathrm{of}\:\mathrm{the}\:\mathrm{mid}−\mathrm{point}\:\mathrm{of}\:\mathrm{the}\:\mathrm{track}\:\mathrm{B} \\ $$$$\mathrm{was}\:\mathrm{2}\:\mathrm{m}\:\mathrm{behind}\:\mathrm{it}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{track}\:\left(\mathrm{in}\:\mathrm{m}\right). \\ $$

Question Number 24426    Answers: 1   Comments: 0

A number is multiplied by 2(1/3) times itself and then 61 is subtracted from the product obtained. If the final result is 9200, then the number is

$$\mathrm{A}\:\mathrm{number}\:\mathrm{is}\:\mathrm{multiplied}\:\mathrm{by}\:\mathrm{2}\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{times} \\ $$$$\mathrm{itself}\:\mathrm{and}\:\mathrm{then}\:\mathrm{61}\:\mathrm{is}\:\mathrm{subtracted}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{product}\:\mathrm{obtained}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{final}\:\mathrm{result} \\ $$$$\mathrm{is}\:\mathrm{9200},\:\mathrm{then}\:\mathrm{the}\:\mathrm{number}\:\mathrm{is} \\ $$

Question Number 24447    Answers: 0   Comments: 8

Figure shows two discs of same mass m. They are rigidly attached to a spring of stiffness k. The system is in equilibrium. From this equilibrium position, the upper disc is pressed down slowly by a distance x and released. Find the minimum value of x, if the lower disc is just lifted off the ground.

$${Figure}\:{shows}\:{two}\:{discs}\:{of}\:{same}\:{mass} \\ $$$${m}.\:{They}\:{are}\:{rigidly}\:{attached}\:{to}\:{a}\:{spring} \\ $$$${of}\:{stiffness}\:{k}.\:{The}\:{system}\:{is}\:{in} \\ $$$${equilibrium}.\:{From}\:{this}\:{equilibrium} \\ $$$${position},\:{the}\:{upper}\:{disc}\:{is}\:{pressed} \\ $$$${down}\:{slowly}\:{by}\:{a}\:{distance}\:{x}\:{and} \\ $$$${released}.\:{Find}\:{the}\:{minimum}\:{value}\:{of} \\ $$$${x},\:{if}\:{the}\:{lower}\:{disc}\:{is}\:{just}\:{lifted}\:{off} \\ $$$${the}\:{ground}. \\ $$

Question Number 24443    Answers: 2   Comments: 0

Solve for x: (10^(−4) x)^x =4×10^(−8)

$${Solve}\:{for}\:{x}: \\ $$$$\left(\mathrm{10}^{−\mathrm{4}} {x}\right)^{{x}} =\mathrm{4}×\mathrm{10}^{−\mathrm{8}} \\ $$

Question Number 24417    Answers: 1   Comments: 0

The time taken by a train l metres long running at x km/h to pass a man who is running at y km/h in the direction opposite to that of the train = The time taken to cover l metres at _____ km/h.

$$\mathrm{The}\:\mathrm{time}\:\mathrm{taken}\:\mathrm{by}\:\mathrm{a}\:\mathrm{train}\:{l}\:\mathrm{metres}\:\mathrm{long} \\ $$$$\mathrm{running}\:\mathrm{at}\:{x}\:\mathrm{km}/\mathrm{h}\:\mathrm{to}\:\mathrm{pass}\:\mathrm{a}\:\mathrm{man}\:\mathrm{who} \\ $$$$\mathrm{is}\:\mathrm{running}\:\mathrm{at}\:{y}\:\mathrm{km}/\mathrm{h}\:\mathrm{in}\:\mathrm{the}\:\mathrm{direction} \\ $$$$\mathrm{opposite}\:\mathrm{to}\:\mathrm{that}\:\mathrm{of}\:\mathrm{the}\:\mathrm{train}\:=\:\mathrm{The}\:\mathrm{time} \\ $$$$\mathrm{taken}\:\mathrm{to}\:\mathrm{cover}\:{l}\:\mathrm{metres}\:\mathrm{at}\:\_\_\_\_\_\:\mathrm{km}/\mathrm{h}. \\ $$

Question Number 24438    Answers: 0   Comments: 2

Find the sum to infinite terms of the series (x/(1−x^2 ))+(x^2 /(1−x^4 ))+(x^4 /(1−x^8 ))+......

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{to}\:\mathrm{infinite}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{series}\:\frac{{x}}{\mathrm{1}−{x}^{\mathrm{2}} }+\frac{{x}^{\mathrm{2}} }{\mathrm{1}−{x}^{\mathrm{4}} }+\frac{{x}^{\mathrm{4}} }{\mathrm{1}−{x}^{\mathrm{8}} }+...... \\ $$

Question Number 24411    Answers: 1   Comments: 0

Question Number 24405    Answers: 0   Comments: 0

Find the horizontal assymptot lim_(x→∞ ) (((3x^2 +4))^(1/6) /((1−2x^3 ))^(1/9) )

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{horizontal}\:\mathrm{assymptot} \\ $$$$\underset{{x}\rightarrow\infty\:} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{6}}]{\mathrm{3x}^{\mathrm{2}} +\mathrm{4}}}{\sqrt[{\mathrm{9}}]{\mathrm{1}−\mathrm{2x}^{\mathrm{3}} }} \\ $$$$ \\ $$

Question Number 24404    Answers: 0   Comments: 0

put a_n = (1/(2n))∙(3/(2n))∙(5/(2n))∙ ... ∙((2n−1)/(2n))∙e^n lim_(n→∞) a_n = ?

$${put}\:{a}_{{n}} =\:\frac{\mathrm{1}}{\mathrm{2}{n}}\centerdot\frac{\mathrm{3}}{\mathrm{2}{n}}\centerdot\frac{\mathrm{5}}{\mathrm{2}{n}}\centerdot\:...\:\centerdot\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}{n}}\centerdot{e}^{{n}} \\ $$$$\underset{{n}\rightarrow\infty} {{lim}a}_{{n}} =\:? \\ $$$$ \\ $$

Question Number 24387    Answers: 1   Comments: 0

Two particle move along an x−axis. The position of particle 1 is given; by x=6.00t^2 +3.00t+2.00((m/s)) the acceleration of particle 2 is given by a=−8.00t((m/s^2 )) and,at t=0,its velocity is 20 ((m/s)).when the velocities of the particles match, what is their velocity? plzz help

$$\boldsymbol{\mathrm{Two}}\:\boldsymbol{\mathrm{particle}}\:\boldsymbol{\mathrm{move}}\:\boldsymbol{\mathrm{along}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{axis}}. \\ $$$$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{position}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{particle}}\:\mathrm{1}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{given}}; \\ $$$$\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{x}}=\mathrm{6}.\mathrm{00}\boldsymbol{\mathrm{t}}^{\mathrm{2}} +\mathrm{3}.\mathrm{00}\boldsymbol{\mathrm{t}}+\mathrm{2}.\mathrm{00}\left(\frac{\boldsymbol{\mathrm{m}}}{\boldsymbol{\mathrm{s}}}\right) \\ $$$$\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{acceleration}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{particle}}\:\mathrm{2}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{given}} \\ $$$$\boldsymbol{\mathrm{by}}\:\:\boldsymbol{\mathrm{a}}=−\mathrm{8}.\mathrm{00}\boldsymbol{\mathrm{t}}\left(\frac{\boldsymbol{\mathrm{m}}}{\boldsymbol{\mathrm{s}}^{\mathrm{2}} }\right)\:\boldsymbol{\mathrm{and}},\mathrm{at}\:\mathrm{t}=\mathrm{0},\boldsymbol{\mathrm{its}} \\ $$$$\boldsymbol{\mathrm{velocity}}\:\boldsymbol{\mathrm{is}}\:\mathrm{20}\:\left(\frac{\boldsymbol{\mathrm{m}}}{\boldsymbol{\mathrm{s}}}\right).\boldsymbol{\mathrm{when}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{velocities}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{particles}}\:\boldsymbol{\mathrm{match}}, \\ $$$$\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{their}}\:\boldsymbol{\mathrm{velocity}}? \\ $$$$\boldsymbol{\mathrm{plzz}}\:\boldsymbol{\mathrm{help}} \\ $$

Question Number 24379    Answers: 2   Comments: 0

Question Number 24371    Answers: 0   Comments: 5

Two blocks are moving together under the action of a constant horizontal external force F. If the smaller block is at rest with respect to the bigger block due to the friction between them, then the normal reaction between the bigger block and floor is

$$\mathrm{Two}\:\mathrm{blocks}\:\mathrm{are}\:\mathrm{moving}\:\mathrm{together}\:\mathrm{under} \\ $$$$\mathrm{the}\:\mathrm{action}\:\mathrm{of}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{horizontal} \\ $$$$\mathrm{external}\:\mathrm{force}\:{F}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{smaller}\:\mathrm{block}\:\mathrm{is} \\ $$$$\mathrm{at}\:\mathrm{rest}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{the}\:\mathrm{bigger}\:\mathrm{block} \\ $$$$\mathrm{due}\:\mathrm{to}\:\mathrm{the}\:\mathrm{friction}\:\mathrm{between}\:\mathrm{them},\:\mathrm{then} \\ $$$$\mathrm{the}\:\mathrm{normal}\:\mathrm{reaction}\:\mathrm{between}\:\mathrm{the}\:\mathrm{bigger} \\ $$$$\mathrm{block}\:\mathrm{and}\:\mathrm{floor}\:\mathrm{is} \\ $$

Question Number 24369    Answers: 0   Comments: 2

Question Number 24366    Answers: 1   Comments: 1

Given the 7-element set A = {a, b, c, d, e, f, g}, find a collection T of 3- element subsets of A such that each pair of elements from A occurs exactly in one of the subsets of T.

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{7}-\mathrm{element}\:\mathrm{set}\:{A}\:=\:\left\{{a},\:{b},\:{c},\right. \\ $$$$\left.{d},\:{e},\:{f},\:{g}\right\},\:\mathrm{find}\:\mathrm{a}\:\mathrm{collection}\:{T}\:\mathrm{of}\:\mathrm{3}- \\ $$$$\mathrm{element}\:\mathrm{subsets}\:\mathrm{of}\:{A}\:\mathrm{such}\:\mathrm{that}\:\mathrm{each} \\ $$$$\mathrm{pair}\:\mathrm{of}\:\mathrm{elements}\:\mathrm{from}\:{A}\:\mathrm{occurs}\:\mathrm{exactly} \\ $$$$\mathrm{in}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{subsets}\:\mathrm{of}\:{T}. \\ $$

Question Number 24363    Answers: 3   Comments: 0

∫(ae)^x dx

$$\int\left({ae}\right)^{{x}} {dx} \\ $$

Question Number 24360    Answers: 0   Comments: 1

Question Number 24359    Answers: 1   Comments: 1

Question Number 24362    Answers: 0   Comments: 1

if the points P,Q(x,7),R,S(6,y) in this order divide the line segment joining A(2,p) and B(7,10) in 5 equal parts find x,y, and p.

$${if}\:{the}\:{points}\:{P},{Q}\left({x},\mathrm{7}\right),{R},{S}\left(\mathrm{6},{y}\right)\:{in}\:{this}\:{order}\:{divide}\:{the}\:{line}\:{segment}\:{joining}\:{A}\left(\mathrm{2},{p}\right)\:{and}\:{B}\left(\mathrm{7},\mathrm{10}\right)\:{in}\:\mathrm{5}\:{equal}\:{parts}\:{find}\:{x},{y},\:{and}\:{p}. \\ $$

  Pg 1846      Pg 1847      Pg 1848      Pg 1849      Pg 1850      Pg 1851      Pg 1852      Pg 1853      Pg 1854      Pg 1855   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com