Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1846
Question Number 25716 Answers: 0 Comments: 0
Question Number 25519 Answers: 2 Comments: 1
Question Number 25520 Answers: 2 Comments: 1
Question Number 25509 Answers: 0 Comments: 1
Question Number 25521 Answers: 1 Comments: 0
Question Number 25528 Answers: 2 Comments: 1
Question Number 25488 Answers: 2 Comments: 3
Question Number 25495 Answers: 0 Comments: 1
Question Number 25738 Answers: 1 Comments: 0
Question Number 25736 Answers: 0 Comments: 0
Question Number 25483 Answers: 1 Comments: 0
$${valute}\:\int\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\frac{}{\left({x}^{\mathrm{2}} +\mathrm{4}\right)}{dx} \\ $$
Question Number 25479 Answers: 1 Comments: 0
Question Number 25482 Answers: 1 Comments: 3
Question Number 25477 Answers: 0 Comments: 0
$$\frac{\mathrm{1}+{x}}{\mathrm{2}}={x}−\mathrm{3}+\frac{\mathrm{5}}{{x}} \\ $$$${LCM}=\left(\:\mathrm{2}\right)\left({x}\right) \\ $$$${multiply}\:{each}\:{step}\:{by}\:\mathrm{2}{x} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\left({x}\right)\left(\frac{\mathrm{1}+{x}}{\mathrm{2}}\right)=\left(\mathrm{2}\right)\left({x}\right)\left({x}−\mathrm{3}\right)+\left(\mathrm{2}\right)\left({x}\right)\left(\frac{\mathrm{5}}{{x}}\right) \\ $$$$ \\ $$$$\left({x}\right)\left(\mathrm{1}+{x}\right)=\mathrm{2}{x}\left({x}−\mathrm{3}\right)+\left(\mathrm{2}\right)\left(\mathrm{5}\right)\:\:\:\:\:\:\:\:\:\:\: \\ $$$${x}+{x}^{\mathrm{2}} =\mathrm{2}{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{10} \\ $$$${move}\:{all}\:{equations}\:{to}\:{LHS} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} −{x}^{\mathrm{2}} −\mathrm{6}{x}−{x}+\mathrm{10}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{10}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{5}\pm\sqrt{\mathrm{25}−\mathrm{40}}}{\mathrm{2}}=\frac{\mathrm{5}\pm\sqrt{−\mathrm{15}}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{5}\pm{i}\sqrt{\mathrm{15}}\right) \\ $$
Question Number 25476 Answers: 1 Comments: 0
$${convert}\:\mathrm{1234}.\mathrm{24}_{\mathrm{8}} \:{to}\:{base}\:\mathrm{10} \\ $$
Question Number 25475 Answers: 0 Comments: 0
Question Number 25474 Answers: 0 Comments: 0
Question Number 25472 Answers: 1 Comments: 0
$${slolve}\:{the}\:{definite}\:{integral}\int_{\mathrm{1}^{} } ^{\mathrm{2}} \frac{\mathrm{1}}{{x}}{dxusingg}>\:\:\:{ng}\: \\ $$$${trapezoidal}\:{rule}\:{with}\:\mathrm{4}\:{sub}\:{intervals}\: \\ $$$${hencefind}\:{an}\:{approximate}\:{value}\:{of}\: \\ $$$${ln}\:\mathrm{2}. \\ $$
Question Number 25468 Answers: 0 Comments: 0
Question Number 25460 Answers: 1 Comments: 2
Question Number 25457 Answers: 1 Comments: 0
Question Number 26949 Answers: 0 Comments: 2
$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{1}}{\mathrm{1}\:+\:{xy}}\:{dx}\:{dy} \\ $$
Question Number 25447 Answers: 0 Comments: 1
Question Number 25446 Answers: 0 Comments: 0
Question Number 25444 Answers: 1 Comments: 8
Question Number 25441 Answers: 1 Comments: 0
$${in}\:{what}\:{ratio}\:{in}\:{which}\:{y}−{x}+\mathrm{2}=\mathrm{0}\:{divides}\:{the}\:{line}\:{joining}\:\left(\mathrm{3},−\mathrm{1}\right)\:{and}\:\left(\mathrm{8},\mathrm{9}\right). \\ $$$$ \\ $$
Pg 1841 Pg 1842 Pg 1843 Pg 1844 Pg 1845 Pg 1846 Pg 1847 Pg 1848 Pg 1849 Pg 1850
Terms of Service
Privacy Policy
Contact: info@tinkutara.com