Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1845

Question Number 18364    Answers: 0   Comments: 0

Question Number 18363    Answers: 0   Comments: 0

Question Number 18362    Answers: 0   Comments: 0

Question Number 18333    Answers: 0   Comments: 1

Question Number 18469    Answers: 1   Comments: 0

Find Z_x and Z_y for each of the functions below (a) Z = 8x^2 y + 14xy^2 + 5y^2 x^3 (b) Z = 4x^3 y^2 + 2x^2 y^3 − 7xy^5

$$\mathrm{Find}\:\mathrm{Z}_{\mathrm{x}} \:\mathrm{and}\:\mathrm{Z}_{\mathrm{y}} \:\mathrm{for}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{functions}\:\mathrm{below} \\ $$$$\left(\mathrm{a}\right)\:\:\mathrm{Z}\:=\:\mathrm{8x}^{\mathrm{2}} \mathrm{y}\:+\:\mathrm{14xy}^{\mathrm{2}} \:+\:\mathrm{5y}^{\mathrm{2}} \mathrm{x}^{\mathrm{3}} \\ $$$$\left(\mathrm{b}\right)\:\:\mathrm{Z}\:=\:\mathrm{4x}^{\mathrm{3}} \mathrm{y}^{\mathrm{2}} \:+\:\mathrm{2x}^{\mathrm{2}} \mathrm{y}^{\mathrm{3}} \:−\:\mathrm{7xy}^{\mathrm{5}} \\ $$

Question Number 18327    Answers: 1   Comments: 1

Question Number 18323    Answers: 0   Comments: 0

Σ((cos 2rθ)/(sin^2 2rθ−sin^2 θ))

$$\Sigma\frac{\mathrm{cos}\:\mathrm{2}{r}\theta}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{r}\theta−\mathrm{sin}\:^{\mathrm{2}} \theta} \\ $$

Question Number 18322    Answers: 1   Comments: 1

The pulley arrangements are identical. The mass of the rope is negligible. In (a), the mass m is lifted up by attaching a mass (2m) to the other end of the rope. In (b), m is lifted up by pulling the other end of the rope with a constant downward force F = 2mg. In which case, the acceleration of m is more?

$$\mathrm{The}\:\mathrm{pulley}\:\mathrm{arrangements}\:\mathrm{are}\:\mathrm{identical}. \\ $$$$\mathrm{The}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rope}\:\mathrm{is}\:\mathrm{negligible}.\:\mathrm{In} \\ $$$$\left(\mathrm{a}\right),\:\mathrm{the}\:\mathrm{mass}\:{m}\:\mathrm{is}\:\mathrm{lifted}\:\mathrm{up}\:\mathrm{by}\:\mathrm{attaching} \\ $$$$\mathrm{a}\:\mathrm{mass}\:\left(\mathrm{2}{m}\right)\:\mathrm{to}\:\mathrm{the}\:\mathrm{other}\:\mathrm{end}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rope}. \\ $$$$\mathrm{In}\:\left(\mathrm{b}\right),\:{m}\:\mathrm{is}\:\mathrm{lifted}\:\mathrm{up}\:\mathrm{by}\:\mathrm{pulling}\:\mathrm{the} \\ $$$$\mathrm{other}\:\mathrm{end}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rope}\:\mathrm{with}\:\mathrm{a}\:\mathrm{constant} \\ $$$$\mathrm{downward}\:\mathrm{force}\:{F}\:=\:\mathrm{2}{mg}.\:\mathrm{In}\:\mathrm{which} \\ $$$$\mathrm{case},\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:{m}\:\mathrm{is}\:\mathrm{more}? \\ $$

Question Number 18318    Answers: 0   Comments: 3

∫ ((x + sinx)/(cosx)) dx

$$\int\:\frac{\mathrm{x}\:+\:\mathrm{sinx}}{\mathrm{cosx}}\:\mathrm{dx} \\ $$

Question Number 18307    Answers: 1   Comments: 0

Question Number 18306    Answers: 1   Comments: 0

Question Number 18320    Answers: 1   Comments: 0

In a triangle ABC with fixed base BC, the vertex A moves such that cos B + cos C = 4 sin^2 (A/2) . If a, b and c denote the lengths of the sides of the triangle opposite to the angles A, B and C respectively, then (1) b + c = 4a (2) b + c = 2a (3) Locus of point A is an ellipse (4) Locus of point A is a pair of straight lines

$$\mathrm{In}\:\mathrm{a}\:\mathrm{triangle}\:{ABC}\:\mathrm{with}\:\mathrm{fixed}\:\mathrm{base}\:{BC}, \\ $$$$\mathrm{the}\:\mathrm{vertex}\:{A}\:\mathrm{moves}\:\mathrm{such}\:\mathrm{that}\:\mathrm{cos}\:{B}\:+ \\ $$$$\mathrm{cos}\:{C}\:=\:\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\frac{{A}}{\mathrm{2}}\:.\:\mathrm{If}\:{a},\:{b}\:\mathrm{and}\:{c}\:\mathrm{denote} \\ $$$$\mathrm{the}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle} \\ $$$$\mathrm{opposite}\:\mathrm{to}\:\mathrm{the}\:\mathrm{angles}\:{A},\:{B}\:\mathrm{and}\:{C} \\ $$$$\mathrm{respectively},\:\mathrm{then} \\ $$$$\left(\mathrm{1}\right)\:{b}\:+\:{c}\:=\:\mathrm{4}{a} \\ $$$$\left(\mathrm{2}\right)\:{b}\:+\:{c}\:=\:\mathrm{2}{a} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Locus}\:\mathrm{of}\:\mathrm{point}\:{A}\:\mathrm{is}\:\mathrm{an}\:\mathrm{ellipse} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Locus}\:\mathrm{of}\:\mathrm{point}\:{A}\:\mathrm{is}\:\mathrm{a}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{straight} \\ $$$$\mathrm{lines} \\ $$

Question Number 18719    Answers: 0   Comments: 2

If cos^2 x_1 + cos^2 x_2 + cos^2 x_3 + cos^2 x_4 + cos^2 x_5 = 5, then sin x_1 + 2sin x_2 + 3sin x_3 + 4sin x_4 + 5sin x_5 is less than or equal to

$$\mathrm{If}\:\mathrm{cos}^{\mathrm{2}} \:{x}_{\mathrm{1}} \:+\:\mathrm{cos}^{\mathrm{2}} \:{x}_{\mathrm{2}} \:+\:\mathrm{cos}^{\mathrm{2}} \:{x}_{\mathrm{3}} \:+\:\mathrm{cos}^{\mathrm{2}} \:{x}_{\mathrm{4}} \\ $$$$+\:\mathrm{cos}^{\mathrm{2}} \:{x}_{\mathrm{5}} \:=\:\mathrm{5},\:\mathrm{then}\:\mathrm{sin}\:{x}_{\mathrm{1}} \:+\:\mathrm{2sin}\:{x}_{\mathrm{2}} \:+ \\ $$$$\mathrm{3sin}\:{x}_{\mathrm{3}} \:+\:\mathrm{4sin}\:{x}_{\mathrm{4}} \:+\:\mathrm{5sin}\:{x}_{\mathrm{5}} \:\mathrm{is}\:\mathrm{less}\:\mathrm{than} \\ $$$$\mathrm{or}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 18299    Answers: 0   Comments: 2

x^x^x = 2, find x

$$\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } \:=\:\mathrm{2},\:\:\:\:\:\:\mathrm{find}\:\:\mathrm{x} \\ $$

Question Number 18470    Answers: 1   Comments: 0

Find the partial derivatives for each of the following (a) Z = 3x^2 (5x + 7y)^2 (b) Z = (w − x − y)^2 (3w + 2x − 4y)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{partial}\:\mathrm{derivatives}\:\mathrm{for}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Z}\:=\:\mathrm{3x}^{\mathrm{2}} \left(\mathrm{5x}\:+\:\mathrm{7y}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Z}\:=\:\left(\mathrm{w}\:−\:\mathrm{x}\:−\:\mathrm{y}\right)^{\mathrm{2}} \:\left(\mathrm{3w}\:+\:\mathrm{2x}\:−\:\mathrm{4y}\right) \\ $$

Question Number 18290    Answers: 0   Comments: 3

Question Number 18285    Answers: 0   Comments: 1

∫_0 ^5 (1/(∫_1 ^8 e^x^(−5) ))dx

$$\int_{\mathrm{0}} ^{\mathrm{5}} \frac{\mathrm{1}}{\int_{\mathrm{1}} ^{\mathrm{8}} \mathrm{e}^{\mathrm{x}^{−\mathrm{5}} } }\mathrm{dx} \\ $$

Question Number 18284    Answers: 1   Comments: 0

If k is any possible number. what is the size of angle between the vectors a(K, k) and b(− 3, 4)

$$\mathrm{If}\:\mathrm{k}\:\mathrm{is}\:\mathrm{any}\:\mathrm{possible}\:\mathrm{number}.\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{size}\:\mathrm{of}\:\mathrm{angle}\:\mathrm{between}\:\mathrm{the}\:\mathrm{vectors} \\ $$$$\mathrm{a}\left(\mathrm{K},\:\mathrm{k}\right)\:\mathrm{and}\:\mathrm{b}\left(−\:\mathrm{3},\:\mathrm{4}\right) \\ $$

Question Number 18283    Answers: 0   Comments: 0

Given: x^2 + y^2 Show that, (d^2 y/dx^2 ) = ((xy)/(y^2 + x^2 ))

$$\mathrm{Given}:\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \\ $$$$\mathrm{Show}\:\mathrm{that},\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=\:\frac{\mathrm{xy}}{\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{x}^{\mathrm{2}} } \\ $$

Question Number 18282    Answers: 0   Comments: 0

Two trains 150 m long and 250 m long are travelling at the speed of 30 kmph and 33 kmph respectively on parallel tracks in opposite directions. What is the time taken by these trains to cross each other completely from the moment they meet?

$$\mathrm{Two}\:\mathrm{trains}\:\mathrm{150}\:\mathrm{m}\:\mathrm{long}\:\mathrm{and}\:\mathrm{250}\:\mathrm{m}\:\mathrm{long} \\ $$$$\mathrm{are}\:\mathrm{travelling}\:\mathrm{at}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{30}\:\mathrm{kmph} \\ $$$$\mathrm{and}\:\mathrm{33}\:\mathrm{kmph}\:\mathrm{respectively}\:\mathrm{on}\:\mathrm{parallel} \\ $$$$\mathrm{tracks}\:\mathrm{in}\:\mathrm{opposite}\:\mathrm{directions}.\:\mathrm{What}\:\mathrm{is} \\ $$$$\mathrm{the}\:\mathrm{time}\:\mathrm{taken}\:\mathrm{by}\:\mathrm{these}\:\mathrm{trains}\:\mathrm{to}\:\mathrm{cross} \\ $$$$\mathrm{each}\:\mathrm{other}\:\mathrm{completely}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{moment}\:\mathrm{they}\:\mathrm{meet}? \\ $$

Question Number 18281    Answers: 2   Comments: 0

Question Number 18278    Answers: 2   Comments: 1

Question Number 18279    Answers: 0   Comments: 0

In an 1800 m race, P beats Q by 50 seconds. In the same race, Q beats R by 40 seconds. If P beats R by 450 m, by what distance does P beat Q ?(in m)

$$\mathrm{In}\:\mathrm{an}\:\mathrm{1800}\:\mathrm{m}\:\mathrm{race},\:\mathrm{P}\:\mathrm{beats}\:\mathrm{Q}\:\mathrm{by}\:\mathrm{50}\: \\ $$$$\mathrm{seconds}.\:\mathrm{In}\:\mathrm{the}\:\mathrm{same}\:\mathrm{race},\:\mathrm{Q}\:\mathrm{beats}\:\mathrm{R}\:\mathrm{by} \\ $$$$\mathrm{40}\:\mathrm{seconds}.\:\mathrm{If}\:\mathrm{P}\:\mathrm{beats}\:\mathrm{R}\:\mathrm{by}\:\mathrm{450}\:\mathrm{m},\:\mathrm{by}\: \\ $$$$\mathrm{what}\:\mathrm{distance}\:\mathrm{does}\:\mathrm{P}\:\mathrm{beat}\:\mathrm{Q}\:?\left(\mathrm{in}\:\mathrm{m}\right) \\ $$

Question Number 18274    Answers: 1   Comments: 0

A balloon moves up vertically such that if a stone is projected with a horizontal velocity u relative to balloon, the stone always hits the ground at a fixed point at a distance ((2u^2 )/g) horizontally away from it. Find the height of the balloon as a function of time.

$$\mathrm{A}\:\mathrm{balloon}\:\mathrm{moves}\:\mathrm{up}\:\mathrm{vertically}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{if}\:\mathrm{a}\:\mathrm{stone}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{with}\:\mathrm{a} \\ $$$$\mathrm{horizontal}\:\mathrm{velocity}\:{u}\:\mathrm{relative}\:\mathrm{to}\:\mathrm{balloon}, \\ $$$$\mathrm{the}\:\mathrm{stone}\:\mathrm{always}\:\mathrm{hits}\:\mathrm{the}\:\mathrm{ground}\:\mathrm{at}\:\mathrm{a} \\ $$$$\mathrm{fixed}\:\mathrm{point}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance}\:\frac{\mathrm{2}{u}^{\mathrm{2}} }{{g}}\:\mathrm{horizontally} \\ $$$$\mathrm{away}\:\mathrm{from}\:\mathrm{it}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{height}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{balloon}\:\mathrm{as}\:\mathrm{a}\:\mathrm{function}\:\mathrm{of}\:\mathrm{time}. \\ $$

Question Number 18271    Answers: 0   Comments: 3

There are two parallel planes, each inclined to the horizontal at an angle θ. A particle is projected from a point mid way between the foot of the two planes so that it grazes one of the planes and strikes the other at right angle. Find the angle of projection of the projectile.

$$\mathrm{There}\:\mathrm{are}\:\mathrm{two}\:\mathrm{parallel}\:\mathrm{planes},\:\mathrm{each} \\ $$$$\mathrm{inclined}\:\mathrm{to}\:\mathrm{the}\:\mathrm{horizontal}\:\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\theta. \\ $$$$\mathrm{A}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{from}\:\mathrm{a}\:\mathrm{point}\:\mathrm{mid} \\ $$$$\mathrm{way}\:\mathrm{between}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}\:\mathrm{planes} \\ $$$$\mathrm{so}\:\mathrm{that}\:\mathrm{it}\:\mathrm{grazes}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{planes}\:\mathrm{and} \\ $$$$\mathrm{strikes}\:\mathrm{the}\:\mathrm{other}\:\mathrm{at}\:\mathrm{right}\:\mathrm{angle}.\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{projection}\:\mathrm{of}\:\mathrm{the}\:\mathrm{projectile}. \\ $$

Question Number 18269    Answers: 0   Comments: 3

The flow velocity of a river increases linearly with the distance (r) from its bank and has its maximum value v_0 in the middle of the river. The velocity near the bank is zero. A boat which can move with speed u in still water moves in the river in such a way that it is always perpendicular to the flow of current. Find (i) The distance along the bank through which boat is carried away by the flow current, when the boat crosses the river. (ii) The equation of trajectory for the coordinate system shown. Assume that the swimmer starts from origin.

$$\mathrm{The}\:\mathrm{flow}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{a}\:\mathrm{river}\:\mathrm{increases} \\ $$$$\mathrm{linearly}\:\mathrm{with}\:\mathrm{the}\:\mathrm{distance}\:\left({r}\right)\:\mathrm{from}\:\mathrm{its} \\ $$$$\mathrm{bank}\:\mathrm{and}\:\mathrm{has}\:\mathrm{its}\:\mathrm{maximum}\:\mathrm{value}\:{v}_{\mathrm{0}} \:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{middle}\:\mathrm{of}\:\mathrm{the}\:\mathrm{river}.\:\mathrm{The}\:\mathrm{velocity} \\ $$$$\mathrm{near}\:\mathrm{the}\:\mathrm{bank}\:\mathrm{is}\:\mathrm{zero}.\:\mathrm{A}\:\mathrm{boat}\:\mathrm{which}\:\mathrm{can} \\ $$$$\mathrm{move}\:\mathrm{with}\:\mathrm{speed}\:{u}\:\mathrm{in}\:\mathrm{still}\:\mathrm{water}\:\mathrm{moves} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{river}\:\mathrm{in}\:\mathrm{such}\:\mathrm{a}\:\mathrm{way}\:\mathrm{that}\:\mathrm{it}\:\mathrm{is} \\ $$$$\mathrm{always}\:\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{the}\:\mathrm{flow}\:\mathrm{of} \\ $$$$\mathrm{current}.\:\mathrm{Find} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{The}\:\mathrm{distance}\:\mathrm{along}\:\mathrm{the}\:\mathrm{bank}\:\mathrm{through} \\ $$$$\mathrm{which}\:\mathrm{boat}\:\mathrm{is}\:\mathrm{carried}\:\mathrm{away}\:\mathrm{by}\:\mathrm{the}\:\mathrm{flow} \\ $$$$\mathrm{current},\:\mathrm{when}\:\mathrm{the}\:\mathrm{boat}\:\mathrm{crosses}\:\mathrm{the} \\ $$$$\mathrm{river}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{The}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{trajectory}\:\mathrm{for}\:\mathrm{the} \\ $$$$\mathrm{coordinate}\:\mathrm{system}\:\mathrm{shown}.\:\mathrm{Assume} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{swimmer}\:\mathrm{starts}\:\mathrm{from}\:\mathrm{origin}. \\ $$

  Pg 1840      Pg 1841      Pg 1842      Pg 1843      Pg 1844      Pg 1845      Pg 1846      Pg 1847      Pg 1848      Pg 1849   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com