Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1843

Question Number 25509    Answers: 0   Comments: 1

Question Number 25521    Answers: 1   Comments: 0

Question Number 25528    Answers: 2   Comments: 1

Question Number 25488    Answers: 2   Comments: 3

Question Number 25495    Answers: 0   Comments: 1

Question Number 25738    Answers: 1   Comments: 0

Question Number 25736    Answers: 0   Comments: 0

Question Number 25483    Answers: 1   Comments: 0

valute ∫(1/((x−1)^2 ))(/((x^2 +4)))dx

$${valute}\:\int\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\frac{}{\left({x}^{\mathrm{2}} +\mathrm{4}\right)}{dx} \\ $$

Question Number 25479    Answers: 1   Comments: 0

Question Number 25482    Answers: 1   Comments: 3

Question Number 25477    Answers: 0   Comments: 0

((1+x)/2)=x−3+(5/x) LCM=( 2)(x) multiply each step by 2x (2)(x)(((1+x)/2))=(2)(x)(x−3)+(2)(x)((5/x)) (x)(1+x)=2x(x−3)+(2)(5) x+x^2 =2x^2 −6x+10 move all equations to LHS 2x^2 −x^2 −6x−x+10=0 x^2 −5x+10=0 x=((5±(√(25−40)))/2)=((5±(√(−15)))/2)=(1/2)(5±i(√(15)))

$$\frac{\mathrm{1}+{x}}{\mathrm{2}}={x}−\mathrm{3}+\frac{\mathrm{5}}{{x}} \\ $$$${LCM}=\left(\:\mathrm{2}\right)\left({x}\right) \\ $$$${multiply}\:{each}\:{step}\:{by}\:\mathrm{2}{x} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\left({x}\right)\left(\frac{\mathrm{1}+{x}}{\mathrm{2}}\right)=\left(\mathrm{2}\right)\left({x}\right)\left({x}−\mathrm{3}\right)+\left(\mathrm{2}\right)\left({x}\right)\left(\frac{\mathrm{5}}{{x}}\right) \\ $$$$ \\ $$$$\left({x}\right)\left(\mathrm{1}+{x}\right)=\mathrm{2}{x}\left({x}−\mathrm{3}\right)+\left(\mathrm{2}\right)\left(\mathrm{5}\right)\:\:\:\:\:\:\:\:\:\:\: \\ $$$${x}+{x}^{\mathrm{2}} =\mathrm{2}{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{10} \\ $$$${move}\:{all}\:{equations}\:{to}\:{LHS} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} −{x}^{\mathrm{2}} −\mathrm{6}{x}−{x}+\mathrm{10}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{10}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{5}\pm\sqrt{\mathrm{25}−\mathrm{40}}}{\mathrm{2}}=\frac{\mathrm{5}\pm\sqrt{−\mathrm{15}}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{5}\pm{i}\sqrt{\mathrm{15}}\right) \\ $$

Question Number 25476    Answers: 1   Comments: 0

convert 1234.24_8 to base 10

$${convert}\:\mathrm{1234}.\mathrm{24}_{\mathrm{8}} \:{to}\:{base}\:\mathrm{10} \\ $$

Question Number 25475    Answers: 0   Comments: 0

Question Number 25474    Answers: 0   Comments: 0

Question Number 25472    Answers: 1   Comments: 0

slolve the definite integral∫_1^ ^2 (1/x)dxusingg> ng trapezoidal rule with 4 sub intervals hencefind an approximate value of ln 2.

$${slolve}\:{the}\:{definite}\:{integral}\int_{\mathrm{1}^{} } ^{\mathrm{2}} \frac{\mathrm{1}}{{x}}{dxusingg}>\:\:\:{ng}\: \\ $$$${trapezoidal}\:{rule}\:{with}\:\mathrm{4}\:{sub}\:{intervals}\: \\ $$$${hencefind}\:{an}\:{approximate}\:{value}\:{of}\: \\ $$$${ln}\:\mathrm{2}. \\ $$

Question Number 25468    Answers: 0   Comments: 0

Question Number 25460    Answers: 1   Comments: 2

Question Number 25457    Answers: 1   Comments: 0

Question Number 26949    Answers: 0   Comments: 2

∫_0 ^1 ∫_0 ^1 (1/(1 + xy)) dx dy

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{1}}{\mathrm{1}\:+\:{xy}}\:{dx}\:{dy} \\ $$

Question Number 25447    Answers: 0   Comments: 1

Question Number 25446    Answers: 0   Comments: 0

Question Number 25444    Answers: 1   Comments: 8

Question Number 25441    Answers: 1   Comments: 0

in what ratio in which y−x+2=0 divides the line joining (3,−1) and (8,9).

$${in}\:{what}\:{ratio}\:{in}\:{which}\:{y}−{x}+\mathrm{2}=\mathrm{0}\:{divides}\:{the}\:{line}\:{joining}\:\left(\mathrm{3},−\mathrm{1}\right)\:{and}\:\left(\mathrm{8},\mathrm{9}\right). \\ $$$$ \\ $$

Question Number 25425    Answers: 0   Comments: 0

Sum of series 1 + 2x + 7x^2 + 20x^3 + ... up to n terms when x = −1 is

$$\mathrm{Sum}\:\mathrm{of}\:\mathrm{series}\:\mathrm{1}\:+\:\mathrm{2}{x}\:+\:\mathrm{7}{x}^{\mathrm{2}} \:+\:\mathrm{20}{x}^{\mathrm{3}} \:+\:... \\ $$$$\mathrm{up}\:\mathrm{to}\:{n}\:\mathrm{terms}\:\mathrm{when}\:{x}\:=\:−\mathrm{1}\:\mathrm{is} \\ $$

Question Number 25462    Answers: 1   Comments: 0

Let S_n , n = 1, 2, 3... be the sum of infinite geometric series whose first term is n and the common ratio is (1/(n + 1)). Then lim_(n→∞) ((S_1 S_n + S_2 S_(n−1) + S_3 S_(n−2) ... + S_n S_1 )/(S_1 ^2 + S_2 ^2 + ... + S_n ^2 )) is

$$\mathrm{Let}\:{S}_{{n}} ,\:{n}\:=\:\mathrm{1},\:\mathrm{2},\:\mathrm{3}...\:\mathrm{be}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{infinite}\:\mathrm{geometric}\:\mathrm{series}\:\mathrm{whose}\:\mathrm{first} \\ $$$$\mathrm{term}\:\mathrm{is}\:{n}\:\mathrm{and}\:\mathrm{the}\:\mathrm{common}\:\mathrm{ratio}\:\mathrm{is} \\ $$$$\frac{\mathrm{1}}{{n}\:+\:\mathrm{1}}.\:\mathrm{Then} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{S}_{\mathrm{1}} {S}_{{n}} \:+\:{S}_{\mathrm{2}} {S}_{{n}−\mathrm{1}} \:+\:{S}_{\mathrm{3}} {S}_{{n}−\mathrm{2}} \:...\:+\:{S}_{{n}} {S}_{\mathrm{1}} }{{S}_{\mathrm{1}} ^{\mathrm{2}} \:+\:{S}_{\mathrm{2}} ^{\mathrm{2}} \:+\:...\:+\:{S}_{{n}} ^{\mathrm{2}} } \\ $$$$\mathrm{is} \\ $$

Question Number 25414    Answers: 1   Comments: 0

if 10^(10 ) electrons are removed neutral bodyb body the charge acquired by the body is? ?

$${if}\:\mathrm{10}^{\mathrm{10}\:} {electrons}\:{are}\:{removed}\:{neutral}\:{bodyb} \\ $$$${body}\:{the}\:{charge}\:{acquired}\:{by}\:{the}\:{body}\:{is}? \\ $$$$? \\ $$$$ \\ $$

  Pg 1838      Pg 1839      Pg 1840      Pg 1841      Pg 1842      Pg 1843      Pg 1844      Pg 1845      Pg 1846      Pg 1847   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com