Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1839

Question Number 24961    Answers: 0   Comments: 0

Question Number 24959    Answers: 2   Comments: 0

In a △ABC, ∠B=π/6, ∠C=π/4 and D divides BC internally in the ratio 1 : 3 then , ((sin ∠BAD)/(sin ∠CAD)) equal to__

$$\mathrm{In}\:\mathrm{a}\:\bigtriangleup\mathrm{ABC},\:\angle\mathrm{B}=\pi/\mathrm{6},\:\angle\mathrm{C}=\pi/\mathrm{4}\:\mathrm{and} \\ $$$$\mathrm{D}\:\mathrm{divides}\:\mathrm{BC}\:\mathrm{internally}\:\mathrm{in}\:\mathrm{the}\:\mathrm{ratio}\: \\ $$$$\mathrm{1}\::\:\mathrm{3}\:\mathrm{then}\:,\:\:\frac{\mathrm{sin}\:\angle\mathrm{BAD}}{\mathrm{sin}\:\angle\mathrm{CAD}}\:\:\:\mathrm{equal}\:\mathrm{to\_\_} \\ $$

Question Number 24948    Answers: 1   Comments: 3

Assuming that the moon′s diameter subtends and angle (1/2)° at the eye of an observer, find how far from the eye of a coin of 10 cm diameter must be held so as just to hide moon ?

$$\mathrm{Assuming}\:\mathrm{that}\:\mathrm{the}\:\mathrm{moon}'\mathrm{s}\:\mathrm{diameter}\: \\ $$$$\mathrm{subtends}\:\mathrm{and}\:\mathrm{angle}\:\left(\mathrm{1}/\mathrm{2}\right)°\:\mathrm{at}\:\mathrm{the}\:\mathrm{eye}\: \\ $$$$\mathrm{of}\:\mathrm{an}\:\mathrm{observer},\:\mathrm{find}\:\mathrm{how}\:\mathrm{far}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{eye}\:\mathrm{of}\:\mathrm{a}\:\mathrm{coin}\:\mathrm{of}\:\mathrm{10}\:\mathrm{cm}\:\mathrm{diameter}\:\mathrm{must}\: \\ $$$$\mathrm{be}\:\mathrm{held}\:\mathrm{so}\:\mathrm{as}\:\mathrm{just}\:\mathrm{to}\:\mathrm{hide}\:\mathrm{moon}\:? \\ $$

Question Number 24944    Answers: 0   Comments: 4

Question Number 24945    Answers: 0   Comments: 4

A particle of mass m moving with a speed v hits elastically another stationary particle of mass 2m on a smooth horizontal circular tube of radius r. The time in which the next collision will take place is equal to

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{a} \\ $$$$\mathrm{speed}\:{v}\:\mathrm{hits}\:\mathrm{elastically}\:\mathrm{another} \\ $$$$\mathrm{stationary}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{2}{m}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{smooth}\:\mathrm{horizontal}\:\mathrm{circular}\:\mathrm{tube}\:\mathrm{of} \\ $$$$\mathrm{radius}\:{r}.\:\mathrm{The}\:\mathrm{time}\:\mathrm{in}\:\mathrm{which}\:\mathrm{the}\:\mathrm{next} \\ $$$$\mathrm{collision}\:\mathrm{will}\:\mathrm{take}\:\mathrm{place}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 24938    Answers: 0   Comments: 1

3^y =2 2^x =3 4^(xy+1) ×9^(xy) = 24^(xy+1) =

$$\mathrm{3}^{{y}} =\mathrm{2} \\ $$$$\mathrm{2}^{{x}} =\mathrm{3} \\ $$$$\mathrm{4}^{{xy}+\mathrm{1}} ×\mathrm{9}^{{xy}} = \\ $$$$\mathrm{24}^{{xy}+\mathrm{1}} = \\ $$

Question Number 24937    Answers: 0   Comments: 1

Question Number 24933    Answers: 0   Comments: 2

if 6sin^4 θ+3cos^4 θ=2 then find the value of (7cosec^6 θ+8sec^6 θ)^(1/3)

$$\mathrm{if}\:\mathrm{6sin}^{\mathrm{4}} \theta+\mathrm{3cos}^{\mathrm{4}} \theta=\mathrm{2}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\left(\mathrm{7cosec}^{\mathrm{6}} \theta+\mathrm{8sec}^{\mathrm{6}} \theta\right)^{\mathrm{1}/\mathrm{3}} \\ $$

Question Number 24934    Answers: 0   Comments: 3

A uniform circular disc of mass 1.5 kg and radius 0.5 m is initially at rest on a horizontal frictionless surface. Three forces of equal magnitude F = 0.5 N are applied simultaneously along the three sides of an equilateral triangle xyz with its vertices on the perimeter of the disc. One second after applying the forces, the angular speed of the disc in rad/s is :

$$\mathrm{A}\:\mathrm{uniform}\:\mathrm{circular}\:\mathrm{disc}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{1}.\mathrm{5}\:\mathrm{kg} \\ $$$$\mathrm{and}\:\mathrm{radius}\:\mathrm{0}.\mathrm{5}\:\mathrm{m}\:\mathrm{is}\:\mathrm{initially}\:\mathrm{at}\:\mathrm{rest}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{horizontal}\:\mathrm{frictionless}\:\mathrm{surface}.\:\mathrm{Three} \\ $$$$\mathrm{forces}\:\mathrm{of}\:\mathrm{equal}\:\mathrm{magnitude}\:{F}\:=\:\mathrm{0}.\mathrm{5}\:\mathrm{N} \\ $$$$\mathrm{are}\:\mathrm{applied}\:\mathrm{simultaneously}\:\mathrm{along}\:\mathrm{the} \\ $$$$\mathrm{three}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle} \\ $$$${xyz}\:\mathrm{with}\:\mathrm{its}\:\mathrm{vertices}\:\mathrm{on}\:\mathrm{the}\:\mathrm{perimeter} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{disc}.\:\mathrm{One}\:\mathrm{second}\:\mathrm{after}\:\mathrm{applying} \\ $$$$\mathrm{the}\:\mathrm{forces},\:\mathrm{the}\:\mathrm{angular}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{disc} \\ $$$$\mathrm{in}\:\mathrm{rad}/\mathrm{s}\:\mathrm{is}\:: \\ $$

Question Number 24930    Answers: 1   Comments: 0

a+a=

$${a}+{a}= \\ $$

Question Number 24913    Answers: 0   Comments: 2

find the derivative of (sec(√(1+cos x)))

$$\mathrm{find}\:\mathrm{the}\:\mathrm{derivative}\:\mathrm{of} \\ $$$$\left(\mathrm{sec}\sqrt{\left.\mathrm{1}+\mathrm{cos}\:\mathrm{x}\right)}\right. \\ $$

Question Number 24912    Answers: 1   Comments: 0

Question Number 24909    Answers: 0   Comments: 0

Question Number 24908    Answers: 0   Comments: 0

If a, b, c are the sides of a triangle prove the following inequality: (a/(c + a − b)) + (b/(a + b − c)) + (c/(b + c − a)) ≥ 3.

$$\mathrm{If}\:{a},\:{b},\:{c}\:\mathrm{are}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{prove} \\ $$$$\mathrm{the}\:\mathrm{following}\:\mathrm{inequality}: \\ $$$$\frac{{a}}{{c}\:+\:{a}\:−\:{b}}\:+\:\frac{{b}}{{a}\:+\:{b}\:−\:{c}}\:+\:\frac{{c}}{{b}\:+\:{c}\:−\:{a}}\:\geqslant\:\mathrm{3}. \\ $$

Question Number 24893    Answers: 0   Comments: 2

About a collision which of the following are not correct a. Physical touch is a must b. Particles cannot change c. Effect of external force is not considered d. Momentum may or may not change multi−correct question

$$\mathrm{About}\:\mathrm{a}\:\mathrm{collision}\:\mathrm{which}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{following}\:\mathrm{are}\:\mathrm{not}\:\mathrm{correct} \\ $$$$\mathrm{a}.\:\mathrm{Physical}\:\mathrm{touch}\:\mathrm{is}\:\mathrm{a}\:\mathrm{must} \\ $$$$\mathrm{b}.\:\mathrm{Particles}\:\mathrm{cannot}\:\mathrm{change} \\ $$$$\mathrm{c}.\:\mathrm{Effect}\:\mathrm{of}\:\mathrm{external}\:\mathrm{force}\:\mathrm{is}\:\mathrm{not}\:\mathrm{considered} \\ $$$$\mathrm{d}.\:\mathrm{Momentum}\:\mathrm{may}\:\mathrm{or}\:\mathrm{may}\:\mathrm{not}\:\mathrm{change} \\ $$$$\mathrm{multi}−\mathrm{correct}\:\mathrm{question} \\ $$

Question Number 24879    Answers: 0   Comments: 4

A particle of mass m is fixed to one end of a light rigid rod of length l and rotated in a vertical circular path about its other end. The minimum speed of the particle at its highest point must be

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{is}\:\mathrm{fixed}\:\mathrm{to}\:\mathrm{one}\:\mathrm{end} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{light}\:\mathrm{rigid}\:\mathrm{rod}\:\mathrm{of}\:\mathrm{length}\:{l}\:\mathrm{and}\:\mathrm{rotated} \\ $$$$\mathrm{in}\:\mathrm{a}\:\mathrm{vertical}\:\mathrm{circular}\:\mathrm{path}\:\mathrm{about}\:\mathrm{its} \\ $$$$\mathrm{other}\:\mathrm{end}.\:\mathrm{The}\:\mathrm{minimum}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{particle}\:\mathrm{at}\:\mathrm{its}\:\mathrm{highest}\:\mathrm{point}\:\mathrm{must}\:\mathrm{be} \\ $$

Question Number 24877    Answers: 0   Comments: 7

Question Number 24866    Answers: 2   Comments: 0

3^x =2 2^y =4 (((3^x )^(4y−1) ×(3^(2x) )^(y+1) )/((3^(3y+2) )^x ))=

$$\mathrm{3}^{{x}} =\mathrm{2} \\ $$$$\mathrm{2}^{{y}} =\mathrm{4} \\ $$$$\frac{\left(\mathrm{3}^{{x}} \right)^{\mathrm{4}{y}−\mathrm{1}} ×\left(\mathrm{3}^{\mathrm{2}{x}} \right)^{{y}+\mathrm{1}} }{\left(\mathrm{3}^{\mathrm{3}{y}+\mathrm{2}} \right)^{{x}} }= \\ $$

Question Number 24865    Answers: 1   Comments: 0

((27^(x−1) +81^x )/3^(3x) )=(4/(27))

$$\frac{\mathrm{27}^{{x}−\mathrm{1}} +\mathrm{81}^{{x}} }{\mathrm{3}^{\mathrm{3}{x}} }=\frac{\mathrm{4}}{\mathrm{27}} \\ $$

Question Number 24864    Answers: 1   Comments: 0

Solve the following trigonometric limit: lim_(x → (π/4)) (5tg(x)) =

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{trigonometric}\:\mathrm{limit}: \\ $$$$ \\ $$$$\underset{\mathrm{x}\:\rightarrow\:\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\left(\mathrm{5tg}\left(\mathrm{x}\right)\right)\:=\: \\ $$

Question Number 24858    Answers: 2   Comments: 0

If three positive numbers a, b, c are in A.P. and (1/a^2 ), (1/b^2 ), (1/c^2 ) also in A.P., then (1) a = b = c (2) 2b = 3a + c (3) b^2 = ((ac)/8) (4) 2c = 2b + a

$$\mathrm{If}\:\mathrm{three}\:\mathrm{positive}\:\mathrm{numbers}\:{a},\:{b},\:{c}\:\mathrm{are}\:\mathrm{in} \\ $$$$\mathrm{A}.\mathrm{P}.\:\mathrm{and}\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} },\:\frac{\mathrm{1}}{{b}^{\mathrm{2}} },\:\frac{\mathrm{1}}{{c}^{\mathrm{2}} }\:\mathrm{also}\:\mathrm{in}\:\mathrm{A}.\mathrm{P}.,\:\mathrm{then} \\ $$$$\left(\mathrm{1}\right)\:{a}\:=\:{b}\:=\:{c} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{2}{b}\:=\:\mathrm{3}{a}\:+\:{c} \\ $$$$\left(\mathrm{3}\right)\:{b}^{\mathrm{2}} \:=\:\frac{{ac}}{\mathrm{8}} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{2}{c}\:=\:\mathrm{2}{b}\:+\:{a} \\ $$

Question Number 24852    Answers: 0   Comments: 1

please prove that∫_0 ^(π/2) log(sinx)dx=−(π/2)log2 or ∫_0 ^((π )/2) log(cosx)dx=−(π/2)log2

$$\mathrm{please}\:\mathrm{prove}\:\mathrm{that}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{log}\left(\mathrm{sinx}\right)\mathrm{dx}=−\frac{\pi}{\mathrm{2}}\mathrm{log2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{or} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi\:\:}{\mathrm{2}}} \mathrm{log}\left(\mathrm{cosx}\right)\mathrm{dx}=−\frac{\pi}{\mathrm{2}}\mathrm{log2} \\ $$

Question Number 24873    Answers: 0   Comments: 6

A rigid body is made of three identical thin rods, each of length L, fastened together in the form of letter H. The body is free to rotate about a horizontal axis that runs along the length of one of legs of H. The body is allowed to fall from rest from a position in which plane of H is horizontal. The angular speed of body when plane of H is vertical is

$$\mathrm{A}\:\mathrm{rigid}\:\mathrm{body}\:\mathrm{is}\:\mathrm{made}\:\mathrm{of}\:\mathrm{three}\:\mathrm{identical} \\ $$$$\mathrm{thin}\:\mathrm{rods},\:\mathrm{each}\:\mathrm{of}\:\mathrm{length}\:{L},\:\mathrm{fastened} \\ $$$$\mathrm{together}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:\mathrm{of}\:\mathrm{letter}\:{H}.\:\mathrm{The} \\ $$$$\mathrm{body}\:\mathrm{is}\:\mathrm{free}\:\mathrm{to}\:\mathrm{rotate}\:\mathrm{about}\:\mathrm{a}\:\mathrm{horizontal} \\ $$$$\mathrm{axis}\:\mathrm{that}\:\mathrm{runs}\:\mathrm{along}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{one}\:\mathrm{of} \\ $$$$\mathrm{legs}\:\mathrm{of}\:{H}.\:\mathrm{The}\:\mathrm{body}\:\mathrm{is}\:\mathrm{allowed}\:\mathrm{to}\:\mathrm{fall} \\ $$$$\mathrm{from}\:\mathrm{rest}\:\mathrm{from}\:\mathrm{a}\:\mathrm{position}\:\mathrm{in}\:\mathrm{which}\:\mathrm{plane} \\ $$$$\mathrm{of}\:{H}\:\mathrm{is}\:\mathrm{horizontal}.\:\mathrm{The}\:\mathrm{angular}\:\mathrm{speed} \\ $$$$\mathrm{of}\:\mathrm{body}\:\mathrm{when}\:\mathrm{plane}\:\mathrm{of}\:{H}\:\mathrm{is}\:\mathrm{vertical}\:\mathrm{is} \\ $$

Question Number 24911    Answers: 1   Comments: 1

find the derivative of ((((1−x)(√(3x−8)))/(sin^2 (1−5x))))^(1/4) plzzz help

$$\mathrm{find}\:\mathrm{the}\:\mathrm{derivative}\:\mathrm{of}\: \\ $$$$\sqrt[{\mathrm{4}}]{\frac{\left(\mathrm{1}−\mathrm{x}\right)\sqrt{\mathrm{3x}−\mathrm{8}}}{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{5x}\right)}} \\ $$$$\mathrm{plzzz}\:\mathrm{help}\: \\ $$

Question Number 24840    Answers: 1   Comments: 1

Question Number 24839    Answers: 2   Comments: 1

((5^(2x+1) +5^(2x) )/(5^(2x) +5^(2x−1) ))=(0/04)^(x−1)

$$\frac{\mathrm{5}^{\mathrm{2}{x}+\mathrm{1}} +\mathrm{5}^{\mathrm{2}{x}} }{\mathrm{5}^{\mathrm{2}{x}} +\mathrm{5}^{\mathrm{2}{x}−\mathrm{1}} }=\left(\mathrm{0}/\mathrm{04}\right)^{{x}−\mathrm{1}} \\ $$

  Pg 1834      Pg 1835      Pg 1836      Pg 1837      Pg 1838      Pg 1839      Pg 1840      Pg 1841      Pg 1842      Pg 1843   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com