Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1835

Question Number 20646    Answers: 1   Comments: 0

if cos (β−γ)+cos( γ−α)+cos (α−β)=−(3/2) so proof it, Σcos α=0,Σsin α=0

$${if}\:\mathrm{cos}\:\left(\beta−\gamma\right)+\mathrm{cos}\left(\:\gamma−\alpha\right)+\mathrm{cos}\:\left(\alpha−\beta\right)=−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${so}\:{proof}\:{it}, \\ $$$$\Sigma\mathrm{cos}\:\alpha=\mathrm{0},\Sigma\mathrm{sin}\:\alpha=\mathrm{0} \\ $$

Question Number 20664    Answers: 0   Comments: 0

In what time shall a carpet of length l and radius R unroll on a flat rough ground if given a little push to start the motion.

$${In}\:{what}\:{time}\:{shall}\:{a}\:{carpet}\:{of} \\ $$$${length}\:\boldsymbol{{l}}\:{and}\:{radius}\:\boldsymbol{{R}}\:{unroll}\:{on} \\ $$$${a}\:{flat}\:{rough}\:{ground}\:{if}\:{given}\:{a}\: \\ $$$${little}\:{push}\:{to}\:{start}\:{the}\:{motion}. \\ $$

Question Number 20639    Answers: 2   Comments: 0

if cos (A+B)sin (C+D)=cos (A−B) sin (C−D) so proof cot Acot Bcot C=cot D

$${if}\:\mathrm{cos}\:\left({A}+{B}\right)\mathrm{sin}\:\left({C}+{D}\right)=\mathrm{cos}\:\left({A}−{B}\right) \\ $$$$\mathrm{sin}\:\left({C}−{D}\right) \\ $$$${so}\:{proof}\:\mathrm{cot}\:{A}\mathrm{cot}\:{B}\mathrm{cot}\:{C}=\mathrm{cot}\:{D} \\ $$

Question Number 20640    Answers: 1   Comments: 0

sin θ=Kcos (θ−α) so proof it,cot θ=((1−Ksin α)/(Kcos α))

$$\mathrm{sin}\:\theta={K}\mathrm{cos}\:\left(\theta−\alpha\right) \\ $$$${so}\:{proof}\:{it},\mathrm{cot}\:\theta=\frac{\mathrm{1}−{K}\mathrm{sin}\:\alpha}{{K}\mathrm{cos}\:\alpha} \\ $$

Question Number 20626    Answers: 1   Comments: 0

Question Number 20625    Answers: 1   Comments: 1

Question Number 20726    Answers: 1   Comments: 0

Five distinct 2-digit numbers are in a geometric progression. Find the middle term.

$$\mathrm{Five}\:\mathrm{distinct}\:\mathrm{2}-\mathrm{digit}\:\mathrm{numbers}\:\mathrm{are}\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{geometric}\:\mathrm{progression}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{middle} \\ $$$$\mathrm{term}. \\ $$

Question Number 20612    Answers: 1   Comments: 0

Evaluate ∫_0 ^( ∞) ∫_0 ^( ∞) e^(−(x^2 +y^2 )) dydx .

$${Evaluate}\:\int_{\mathrm{0}} ^{\:\:\infty} \int_{\mathrm{0}} ^{\:\:\infty} {e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} {dydx}\:. \\ $$

Question Number 20599    Answers: 1   Comments: 0

In a rectangle ABCD, E is the midpoint of AB; F is a point on AC such that BF is perpendicular to AC; and FE perpendicular to BD. Suppose BC = 8(√3). Find AB.

$$\mathrm{In}\:\mathrm{a}\:\mathrm{rectangle}\:{ABCD},\:{E}\:\mathrm{is}\:\mathrm{the}\:\mathrm{midpoint} \\ $$$$\mathrm{of}\:{AB};\:{F}\:\mathrm{is}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:{AC}\:\mathrm{such}\:\mathrm{that}\:{BF} \\ $$$$\mathrm{is}\:\mathrm{perpendicular}\:\mathrm{to}\:{AC};\:\mathrm{and}\:{FE} \\ $$$$\mathrm{perpendicular}\:\mathrm{to}\:{BD}.\:\mathrm{Suppose}\:{BC}\:=\:\mathrm{8}\sqrt{\mathrm{3}}. \\ $$$$\mathrm{Find}\:{AB}. \\ $$

Question Number 20619    Answers: 1   Comments: 0

Solve the equation z^(n−1) = z^ (n ∈ N)

$${Solve}\:{the}\:{equation}\:{z}^{{n}−\mathrm{1}} \:=\:\bar {{z}}\:\left({n}\:\in\:{N}\right) \\ $$

Question Number 20631    Answers: 2   Comments: 0

Solve the inequality (x + 3)^5 − (x − 1)^5 ≥ 244.

$${Solve}\:{the}\:{inequality} \\ $$$$\left({x}\:+\:\mathrm{3}\right)^{\mathrm{5}} \:−\:\left({x}\:−\:\mathrm{1}\right)^{\mathrm{5}} \:\geqslant\:\mathrm{244}. \\ $$

Question Number 20616    Answers: 0   Comments: 1

x=rcos θcos ∅,y=rsin θsin ∅,z=sin θ then prove that x^2 +y^2 +z^2 =r^2

$${x}={r}\mathrm{cos}\:\theta\mathrm{cos}\:\emptyset,{y}={r}\mathrm{sin}\:\theta\mathrm{sin}\:\emptyset,{z}=\mathrm{sin}\:\theta \\ $$$${then}\:{prove}\:{that}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$

Question Number 20613    Answers: 0   Comments: 2

Question Number 20581    Answers: 0   Comments: 5

The surface between wedge and block is rough (Coefficient of friction μ). Find out the range of F such that, there is no relative motion between wedge and block. The wedge can move freely on smooth ground.

$${The}\:{surface}\:{between}\:{wedge}\:{and}\:{block} \\ $$$${is}\:{rough}\:\left({Coefficient}\:{of}\:{friction}\:\mu\right). \\ $$$${Find}\:{out}\:{the}\:{range}\:{of}\:{F}\:{such}\:{that}, \\ $$$${there}\:{is}\:{no}\:{relative}\:{motion}\:{between} \\ $$$${wedge}\:{and}\:{block}.\:{The}\:{wedge}\:{can}\:{move} \\ $$$${freely}\:{on}\:{smooth}\:{ground}. \\ $$

Question Number 20579    Answers: 0   Comments: 3

A 1 kg block is being pushed against a wall by a force F = 75 N as shown in the figure. The coefficient of friction is 0.25. The magnitude of acceleration of the block is

$$\mathrm{A}\:\mathrm{1}\:\mathrm{kg}\:\mathrm{block}\:\mathrm{is}\:\mathrm{being}\:\mathrm{pushed}\:\mathrm{against}\:\mathrm{a} \\ $$$$\mathrm{wall}\:\mathrm{by}\:\mathrm{a}\:\mathrm{force}\:{F}\:=\:\mathrm{75}\:\mathrm{N}\:\mathrm{as}\:\mathrm{shown}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{figure}.\:\mathrm{The}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{friction}\:\mathrm{is} \\ $$$$\mathrm{0}.\mathrm{25}.\:\mathrm{The}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{acceleration}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{block}\:\mathrm{is} \\ $$

Question Number 20561    Answers: 1   Comments: 0

Question Number 20559    Answers: 1   Comments: 0

Question Number 20558    Answers: 1   Comments: 1

Question Number 20552    Answers: 1   Comments: 0

The roots of the equation (3−x)^4 +(2−x)^4 =(5−2x)^4 are (a) all real (b) all imaginary (c) two real and two imaginary (d)none of the above .

$${The}\:{roots}\:{of}\:{the}\:{equation}\: \\ $$$$\:\left(\mathrm{3}−{x}\right)^{\mathrm{4}} +\left(\mathrm{2}−{x}\right)^{\mathrm{4}} =\left(\mathrm{5}−\mathrm{2}{x}\right)^{\mathrm{4}} \:{are} \\ $$$$\left({a}\right)\:{all}\:{real}\:\:\:\:\left({b}\right)\:{all}\:{imaginary} \\ $$$$\left({c}\right)\:{two}\:{real}\:{and}\:{two}\:{imaginary} \\ $$$$\left({d}\right){none}\:{of}\:{the}\:{above}\:. \\ $$

Question Number 20574    Answers: 1   Comments: 0

(1 + tan 1°)(1 + tan 2°)...(1 + tan 45°) = 2^(n+1) find n !

$$\left(\mathrm{1}\:+\:\mathrm{tan}\:\mathrm{1}°\right)\left(\mathrm{1}\:+\:\mathrm{tan}\:\mathrm{2}°\right)...\left(\mathrm{1}\:+\:\mathrm{tan}\:\mathrm{45}°\right)\:=\:\mathrm{2}^{{n}+\mathrm{1}} \\ $$$$\mathrm{find}\:{n}\:! \\ $$

Question Number 20541    Answers: 1   Comments: 0

∫((xdx)/((x−1)(x^2 +1)))

$$\int\frac{{xdx}}{\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$

Question Number 20540    Answers: 1   Comments: 0

∫((√x)/(1+x^(1/3) ))dx

$$\int\frac{\sqrt{{x}}}{\mathrm{1}+{x}^{\frac{\mathrm{1}}{\mathrm{3}}} }{dx} \\ $$

Question Number 20539    Answers: 0   Comments: 0

∫(dx/(x^(1/3) −x^(1/6) ))

$$\int\frac{{dx}}{{x}^{\frac{\mathrm{1}}{\mathrm{3}}} −{x}^{\frac{\mathrm{1}}{\mathrm{6}}} } \\ $$

Question Number 20538    Answers: 0   Comments: 0

∫(dx/(e^(2x) −3e^x ))

$$\int\frac{{dx}}{{e}^{\mathrm{2}{x}} −\mathrm{3}{e}^{{x}} } \\ $$

Question Number 20537    Answers: 0   Comments: 0

∫((2e^x +5)/(5e^x +2))dx

$$\int\frac{\mathrm{2}{e}^{{x}} +\mathrm{5}}{\mathrm{5}{e}^{{x}} +\mathrm{2}}{dx} \\ $$

Question Number 20550    Answers: 1   Comments: 0

Find the equation of circle in complex form which touches iz + z^ + 1 + i = 0 and for which the lines (1 − i)z = (1 + i)z^ and (1 + i)z + (i − 1)z^ − 4i = 0 are normals.

$${Find}\:{the}\:{equation}\:{of}\:{circle}\:{in}\:{complex} \\ $$$${form}\:{which}\:{touches}\:{iz}\:+\:\bar {{z}}\:+\:\mathrm{1}\:+\:{i}\:=\:\mathrm{0} \\ $$$${and}\:{for}\:{which}\:{the}\:{lines}\:\left(\mathrm{1}\:−\:{i}\right){z}\:= \\ $$$$\left(\mathrm{1}\:+\:{i}\right)\bar {{z}}\:{and}\:\left(\mathrm{1}\:+\:{i}\right){z}\:+\:\left({i}\:−\:\mathrm{1}\right)\bar {{z}}\:−\:\mathrm{4}{i}\:=\:\mathrm{0} \\ $$$${are}\:{normals}. \\ $$

  Pg 1830      Pg 1831      Pg 1832      Pg 1833      Pg 1834      Pg 1835      Pg 1836      Pg 1837      Pg 1838      Pg 1839   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com