Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1834

Question Number 17493    Answers: 0   Comments: 0

What is logarithm series?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{logarithm}\:\mathrm{series}? \\ $$

Question Number 16457    Answers: 1   Comments: 0

Find the range of f(x) = (3/(2 − x^2 ))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{f}\left({x}\right)\:=\:\frac{\mathrm{3}}{\mathrm{2}\:−\:{x}^{\mathrm{2}} } \\ $$

Question Number 16455    Answers: 2   Comments: 0

The speed of a projectile when it is at its greatest height is (√(2/5)) times its speed at half the maximum height. What is its angle of projection?

$$\mathrm{The}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{a}\:\mathrm{projectile}\:\mathrm{when}\:\mathrm{it}\:\mathrm{is}\:\mathrm{at} \\ $$$$\mathrm{its}\:\mathrm{greatest}\:\mathrm{height}\:\mathrm{is}\:\sqrt{\frac{\mathrm{2}}{\mathrm{5}}}\:\mathrm{times}\:\mathrm{its} \\ $$$$\mathrm{speed}\:\mathrm{at}\:\mathrm{half}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{height}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{its}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{projection}? \\ $$

Question Number 16451    Answers: 0   Comments: 0

The sixth term of an AP is 2, and its common difference is greater than one. The value of the common difference of the progression so that the product of the first, fourth and fifth terms is greatest is

$$\mathrm{The}\:\mathrm{sixth}\:\mathrm{term}\:\mathrm{of}\:\mathrm{an}\:\mathrm{AP}\:\mathrm{is}\:\mathrm{2},\:\mathrm{and}\:\mathrm{its} \\ $$$$\mathrm{common}\:\mathrm{difference}\:\mathrm{is}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{one}. \\ $$$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{common}\:\mathrm{difference}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{progression}\:\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{first},\:\mathrm{fourth}\:\mathrm{and}\:\mathrm{fifth}\:\mathrm{terms}\:\mathrm{is}\:\mathrm{greatest}\:\mathrm{is} \\ $$

Question Number 16430    Answers: 1   Comments: 2

In ΔABC with usual notation (r_1 /(bc)) + (r_2 /(ca)) + (r_3 /(ab)) is (1) (1/r) − (1/R) (2) (1/r) − (1/(2R)) (3) (1/r) + (1/(2R)) (4) (1/r) + (1/R)

$$\mathrm{In}\:\Delta{ABC}\:\mathrm{with}\:\mathrm{usual}\:\mathrm{notation} \\ $$$$\frac{{r}_{\mathrm{1}} }{{bc}}\:+\:\frac{{r}_{\mathrm{2}} }{{ca}}\:+\:\frac{{r}_{\mathrm{3}} }{{ab}}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\frac{\mathrm{1}}{{r}}\:−\:\frac{\mathrm{1}}{{R}} \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{1}}{{r}}\:−\:\frac{\mathrm{1}}{\mathrm{2}{R}} \\ $$$$\left(\mathrm{3}\right)\:\frac{\mathrm{1}}{{r}}\:+\:\frac{\mathrm{1}}{\mathrm{2}{R}} \\ $$$$\left(\mathrm{4}\right)\:\frac{\mathrm{1}}{{r}}\:+\:\frac{\mathrm{1}}{{R}} \\ $$

Question Number 17647    Answers: 0   Comments: 5

ABC is a triangular park with AB = AC = 100 m. A clock tower is situated at the midpoint of BC. The angles of elevation of top of the tower at A and B are cot^(−1) (3.2) and cosec^(−1) (2.6) respectively. The height of tower is

$${ABC}\:\mathrm{is}\:\mathrm{a}\:\mathrm{triangular}\:\mathrm{park}\:\mathrm{with}\:{AB}\:= \\ $$$${AC}\:=\:\mathrm{100}\:\mathrm{m}.\:\mathrm{A}\:\mathrm{clock}\:\mathrm{tower}\:\mathrm{is}\:\mathrm{situated} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:{BC}.\:\mathrm{The}\:\mathrm{angles}\:\mathrm{of} \\ $$$$\mathrm{elevation}\:\mathrm{of}\:\mathrm{top}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tower}\:\mathrm{at}\:{A}\:\mathrm{and} \\ $$$${B}\:\mathrm{are}\:\mathrm{cot}^{−\mathrm{1}} \left(\mathrm{3}.\mathrm{2}\right)\:\mathrm{and}\:\mathrm{cosec}^{−\mathrm{1}} \left(\mathrm{2}.\mathrm{6}\right) \\ $$$$\mathrm{respectively}.\:\mathrm{The}\:\mathrm{height}\:\mathrm{of}\:\mathrm{tower}\:\mathrm{is} \\ $$

Question Number 16419    Answers: 1   Comments: 0

3 cubes of metal whose edges are 3,4 and 5 respectively are melted and formed into a single cube. If there be no loss of metal in the process find the side of the new cube.

$$\mathrm{3}\:\mathrm{cubes}\:\mathrm{of}\:\mathrm{metal}\:\mathrm{whose}\:\mathrm{edges}\:\mathrm{are}\:\mathrm{3},\mathrm{4} \\ $$$$\mathrm{and}\:\mathrm{5}\:\mathrm{respectively}\:\mathrm{are}\:\mathrm{melted}\:\mathrm{and} \\ $$$$\mathrm{formed}\:\mathrm{into}\:\mathrm{a}\:\mathrm{single}\:\mathrm{cube}.\:\mathrm{If}\:\mathrm{there}\:\mathrm{be} \\ $$$$\mathrm{no}\:\mathrm{loss}\:\mathrm{of}\:\mathrm{metal}\:\mathrm{in}\:\mathrm{the}\:\mathrm{process}\:\mathrm{find} \\ $$$$\mathrm{the}\:\mathrm{side}\:\mathrm{of}\:\mathrm{the}\:\mathrm{new}\:\mathrm{cube}. \\ $$

Question Number 16418    Answers: 1   Comments: 0

A solid sphere of radius 4 cm is melted and recast into ′n′ solid hemispheres of radius 2 cm each. Find n.

$$\mathrm{A}\:\mathrm{solid}\:\mathrm{sphere}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{4}\:\mathrm{cm}\:\mathrm{is}\:\mathrm{melted} \\ $$$$\mathrm{and}\:\mathrm{recast}\:\mathrm{into}\:'{n}'\:\mathrm{solid}\:\mathrm{hemispheres}\:\mathrm{of} \\ $$$$\mathrm{radius}\:\mathrm{2}\:\mathrm{cm}\:\mathrm{each}.\:\mathrm{Find}\:{n}. \\ $$

Question Number 16409    Answers: 3   Comments: 9

Question Number 16406    Answers: 0   Comments: 0

D={(x,y)∣∣x∣+∣y∣≤1,∣x∣+∣y∣≥0.5} ∫∫_(D) ln (x^2 +y^2 )dxdy a)≥0; b)≤0; c)=0; d)non-existent.

$$\mathrm{D}=\left\{\left({x},\mathrm{y}\right)\mid\mid{x}\mid+\mid\mathrm{y}\mid\leqslant\mathrm{1},\mid{x}\mid+\mid{y}\mid\geqslant\mathrm{0}.\mathrm{5}\right\} \\ $$$$\underset{\mathrm{D}} {\int\int}\mathrm{ln}\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dxdy} \\ $$$$\left.\mathrm{a}\right)\geqslant\mathrm{0}; \\ $$$$\left.\mathrm{b}\right)\leqslant\mathrm{0}; \\ $$$$\left.\mathrm{c}\right)=\mathrm{0}; \\ $$$$\left.\mathrm{d}\right)\mathrm{non}-\mathrm{existent}. \\ $$

Question Number 16401    Answers: 1   Comments: 0

v=2i+2j+5k r=i+9j−8k Find 𝛚 I can do ((r×v)/r^2 )=𝛚 and i get 𝛚= ((61i−21j−16k)/(146)) but i dont get w×r=v. why?

$$\boldsymbol{{v}}=\mathrm{2}\boldsymbol{{i}}+\mathrm{2}\boldsymbol{{j}}+\mathrm{5}\boldsymbol{{k}} \\ $$$$\boldsymbol{{r}}=\boldsymbol{{i}}+\mathrm{9}\boldsymbol{{j}}−\mathrm{8}\boldsymbol{{k}} \\ $$$$\mathrm{Find}\:\boldsymbol{\omega} \\ $$$$\mathrm{I}\:\mathrm{can}\:\mathrm{do}\:\frac{\boldsymbol{{r}}×\boldsymbol{{v}}}{{r}^{\mathrm{2}} }=\boldsymbol{\omega} \\ $$$$\mathrm{and}\:\mathrm{i}\:\mathrm{get}\:\boldsymbol{\omega}=\:\frac{\mathrm{61}\boldsymbol{{i}}−\mathrm{21}\boldsymbol{{j}}−\mathrm{16}\boldsymbol{{k}}}{\mathrm{146}} \\ $$$$\mathrm{but}\:\mathrm{i}\:\mathrm{dont}\:\mathrm{get}\:\boldsymbol{{w}}×\boldsymbol{{r}}=\boldsymbol{{v}}. \\ $$$${why}? \\ $$

Question Number 16392    Answers: 3   Comments: 0

Question Number 16387    Answers: 0   Comments: 0

Why sinx is a power series?

$${Why}\:{sinx}\:{is}\:{a}\:{power}\:{series}? \\ $$

Question Number 16383    Answers: 2   Comments: 0

If P : Q : R = 2 : 3 : 4 and P^2 +Q^2 +R^2 =11600, then find (P+Q−R).

$$\mathrm{If}\:\mathrm{P}\::\:\mathrm{Q}\::\:\mathrm{R}\:=\:\mathrm{2}\::\:\mathrm{3}\::\:\mathrm{4}\:\mathrm{and}\:\mathrm{P}^{\mathrm{2}} +\mathrm{Q}^{\mathrm{2}} +\mathrm{R}^{\mathrm{2}} =\mathrm{11600}, \\ $$$$\mathrm{then}\:\mathrm{find}\:\left(\mathrm{P}+\mathrm{Q}−\mathrm{R}\right). \\ $$

Question Number 16373    Answers: 1   Comments: 1

if Σ_(k=0) ^(200) i^k +Π_(p=1) ^(50) i^p =x+iy then..(x,y)is... a. (0,1) b. (1,−1) c. (2,3) d. (4,8)

$${if}\:\underset{{k}=\mathrm{0}} {\overset{\mathrm{200}} {\sum}}{i}^{{k}} +\underset{{p}=\mathrm{1}} {\overset{\mathrm{50}} {\prod}}{i}^{{p}} ={x}+{iy}\:{then}..\left({x},{y}\right){is}... \\ $$$${a}.\:\left(\mathrm{0},\mathrm{1}\right) \\ $$$${b}.\:\left(\mathrm{1},−\mathrm{1}\right) \\ $$$${c}.\:\left(\mathrm{2},\mathrm{3}\right) \\ $$$${d}.\:\left(\mathrm{4},\mathrm{8}\right) \\ $$

Question Number 16364    Answers: 1   Comments: 0

Question Number 16363    Answers: 1   Comments: 3

A car drives due north at 50 km/hr. Wind blows due North-West at 50(√2) km/hr. In what direction, a flag hoisted on the roof of the car points?

$$\mathrm{A}\:\mathrm{car}\:\mathrm{drives}\:\mathrm{due}\:\mathrm{north}\:\mathrm{at}\:\mathrm{50}\:\mathrm{km}/\mathrm{hr}. \\ $$$$\mathrm{Wind}\:\mathrm{blows}\:\mathrm{due}\:\mathrm{North}-\mathrm{West}\:\mathrm{at}\:\mathrm{50}\sqrt{\mathrm{2}} \\ $$$$\mathrm{km}/\mathrm{hr}.\:\mathrm{In}\:\mathrm{what}\:\mathrm{direction},\:\mathrm{a}\:\mathrm{flag} \\ $$$$\mathrm{hoisted}\:\mathrm{on}\:\mathrm{the}\:\mathrm{roof}\:\mathrm{of}\:\mathrm{the}\:\mathrm{car}\:\mathrm{points}? \\ $$

Question Number 16360    Answers: 1   Comments: 0

Question Number 16359    Answers: 1   Comments: 0

In a ΔABC if ((s − a)/(a − b)) = ((s − c)/(b − c)) , then prove that r_1 , r_2 , r_3 are in A.P. Here r_1 , r_2 and r_3 are the exradii opposite to angles A, B and C respectively.

$$\mathrm{In}\:\mathrm{a}\:\Delta{ABC}\:\mathrm{if}\:\frac{{s}\:−\:{a}}{{a}\:−\:{b}}\:=\:\frac{{s}\:−\:{c}}{{b}\:−\:{c}}\:,\:\mathrm{then} \\ $$$$\mathrm{prove}\:\mathrm{that}\:{r}_{\mathrm{1}} ,\:{r}_{\mathrm{2}} ,\:{r}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{in}\:\mathrm{A}.\mathrm{P}. \\ $$$$\mathrm{Here}\:{r}_{\mathrm{1}} ,\:{r}_{\mathrm{2}} \:\mathrm{and}\:{r}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{the}\:\mathrm{exradii} \\ $$$$\mathrm{opposite}\:\mathrm{to}\:\mathrm{angles}\:{A},\:{B}\:\mathrm{and}\:{C}\:\mathrm{respectively}. \\ $$

Question Number 16358    Answers: 1   Comments: 1

In any triangle ABC, a cot A + b cot B + c cot C is equal to (1) r + R (2) r − R (3) 2(r + R) (4) 2(r − R)

$$\mathrm{In}\:\mathrm{any}\:\mathrm{triangle}\:{ABC},\:{a}\:\mathrm{cot}\:{A}\:+\:{b}\:\mathrm{cot}\:{B} \\ $$$$+\:{c}\:\mathrm{cot}\:{C}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\left(\mathrm{1}\right)\:{r}\:+\:{R} \\ $$$$\left(\mathrm{2}\right)\:{r}\:−\:{R} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{2}\left({r}\:+\:{R}\right) \\ $$$$\left(\mathrm{4}\right)\:\mathrm{2}\left({r}\:−\:{R}\right) \\ $$

Question Number 16450    Answers: 0   Comments: 3

Ten balls were manufactured, nine of them have the same mass, while just one of them has a slightly higher or slightly lower mass. Given is just a beam balance and no weights. comparing the masses of balls only, with the help of the balance , and in just 3 weighings explain how to judge which is the defective one and whether it is heavier or lighter than the rest (as the case may be).

$${Ten}\:{balls}\:{were}\:{manufactured}, \\ $$$$\:{nine}\:{of}\:{them}\:{have}\:{the}\:{same} \\ $$$${mass},\:{while}\:{just}\:{one}\:{of}\:{them} \\ $$$${has}\:{a}\:{slightly}\:{higher}\:{or}\:{slightly} \\ $$$${lower}\:{mass}.\:{Given}\:{is}\:{just}\:{a}\:{beam} \\ $$$${balance}\:{and}\:{no}\:{weights}.\:{comparing} \\ $$$${the}\:{masses}\:{of}\:{balls}\:{only},\:{with}\:{the} \\ $$$${help}\:{of}\:{the}\:{balance}\:,\:{and}\:{in}\:{just} \\ $$$$\mathrm{3}\:{weighings}\:{explain}\:{how}\:{to}\:{judge} \\ $$$${which}\:{is}\:{the}\:{defective}\:{one}\:{and} \\ $$$${whether}\:{it}\:{is}\:{heavier}\:{or}\:{lighter} \\ $$$${than}\:{the}\:{rest}\:\left({as}\:{the}\:{case}\:{may}\:{be}\right). \\ $$

Question Number 16441    Answers: 1   Comments: 2

Question Number 16338    Answers: 1   Comments: 2

Question Number 16330    Answers: 0   Comments: 0

Question Number 16310    Answers: 1   Comments: 3

Question Number 16302    Answers: 1   Comments: 5

Related to Q16140 What if the three lines d_1 ,d_2 ,d_3 are not parallel, but concurrent?

$$\mathrm{Related}\:\mathrm{to}\:\mathrm{Q16140} \\ $$$$\mathrm{What}\:\mathrm{if}\:\mathrm{the}\:\mathrm{three}\:\mathrm{lines}\:\mathrm{d}_{\mathrm{1}} ,\mathrm{d}_{\mathrm{2}} ,\mathrm{d}_{\mathrm{3}} \:\mathrm{are} \\ $$$$\mathrm{not}\:\mathrm{parallel},\:\mathrm{but}\:\mathrm{concurrent}? \\ $$

  Pg 1829      Pg 1830      Pg 1831      Pg 1832      Pg 1833      Pg 1834      Pg 1835      Pg 1836      Pg 1837      Pg 1838   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com