Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1832

Question Number 19738    Answers: 1   Comments: 1

Locus of the point z satisfying the equation ∣iz − 1∣ + ∣z − i∣ = 2 is

Locusofthepointzsatisfyingtheequationiz1+zi=2is

Question Number 19736    Answers: 1   Comments: 1

Question Number 19735    Answers: 1   Comments: 0

If z = λ + 3 + i(√(5 − λ^2 )), then the locus of z is a

Ifz=λ+3+i5λ2,thenthelocusofzisa

Question Number 19733    Answers: 1   Comments: 0

If ∣z + 1∣ = (√2)∣z − 1∣, then the locus described by the point z in the argand diagram is a

Ifz+1=2z1,thenthelocusdescribedbythepointzinthearganddiagramisa

Question Number 19734    Answers: 1   Comments: 0

If the imaginary part of ((2z + 1)/(iz + 1)) is −2, then the locus of the point representing z in the complex plane is

Iftheimaginarypartof2z+1iz+1is2,thenthelocusofthepointrepresentingzinthecomplexplaneis

Question Number 19732    Answers: 1   Comments: 0

The locus of z given by ∣((z − 1)/(z − i))∣ = 1 is

Thelocusofzgivenbyz1zi=1is

Question Number 19730    Answers: 1   Comments: 0

If z = x + iy and ∣z − 2i∣ = 1, then (1) z lies on x-axis (2) z lies on y-axis (3) z lies on a circle (4) None of these

Ifz=x+iyandz2i=1,then(1)zliesonxaxis(2)zliesonyaxis(3)zliesonacircle(4)Noneofthese

Question Number 19729    Answers: 1   Comments: 0

2x + 9y^2 = 4 2x^2 − 45y^2 + xy = 0 Find the value of xy

2x+9y2=42x245y2+xy=0Findthevalueofxy

Question Number 19709    Answers: 1   Comments: 0

In the cyclic quadrilateral ABCD AB=7,BC=8,CD=8,DA=15. Calculate the angle ADC and the length ofAC.

InthecyclicquadrilateralABCDAB=7,BC=8,CD=8,DA=15.CalculatetheangleADCandthelengthofAC.

Question Number 19704    Answers: 1   Comments: 0

What is the sum (in base 10) of all the natural numbers less than 64 which have exactly three ones in their base 2 representation?

Whatisthesum(inbase10)ofallthenaturalnumberslessthan64whichhaveexactlythreeonesintheirbase2representation?

Question Number 19783    Answers: 1   Comments: 3

The sides of a triangle are of lengths (√((m^2 −n^2 ))) ,m^2 +n^2 , 2mn. Show that it is a right angle Δ.

Thesidesofatriangleareoflengths(m2n2),m2+n2,2mn.ShowthatitisarightangleΔ.

Question Number 19700    Answers: 1   Comments: 0

What is the maximum possible value of k for which 2013 can be written as a sum of k consecutive positive integers?

Whatisthemaximumpossiblevalueofkforwhich2013canbewrittenasasumofkconsecutivepositiveintegers?

Question Number 19699    Answers: 0   Comments: 0

Let S be a circle with centre O. A chord AB, not a diameter, divides S into two regions R_1 and R_2 such that O belongs to R_2 . Let S_1 be a circle with centre in R_1 , touching AB at X and S internally. Let S_2 be a circle with centre in R_2 , touching AB at Y, the circle S internally and passing through the centre of S. The point X lies on the diameter passing through the centre of S_2 and ∠YXO = 30°. If the radius of S_2 is 100 then what is the radius of S_1 ?

LetSbeacirclewithcentreO.AchordAB,notadiameter,dividesSintotworegionsR1andR2suchthatObelongstoR2.LetS1beacirclewithcentreinR1,touchingABatXandSinternally.LetS2beacirclewithcentreinR2,touchingABatY,thecircleSinternallyandpassingthroughthecentreofS.ThepointXliesonthediameterpassingthroughthecentreofS2andYXO=30°.IftheradiusofS2is100thenwhatistheradiusofS1?

Question Number 19698    Answers: 1   Comments: 0

Let f(x) = x^3 − 3x + b and g(x) = x^2 + bx − 3, where b is a real number. What is the sum of all possible values of b for which the equations f(x) = 0 and g(x) = 0 have a common root?

Letf(x)=x33x+bandg(x)=x2+bx3,wherebisarealnumber.Whatisthesumofallpossiblevaluesofbforwhichtheequationsf(x)=0andg(x)=0haveacommonroot?

Question Number 22315    Answers: 0   Comments: 0

Prove that the greatest coefficient in the expansion of (x_1 +x_2 +x_3 +...+x_k )^n = ((n!)/((q!)^(k−r) [(q+1)!]^r )) , where n = qk + r, 0 ≤ r ≤ k − 1

Provethatthegreatestcoefficientintheexpansionof(x1+x2+x3+...+xk)n=n!(q!)kr[(q+1)!]r,wheren=qk+r,0rk1

Question Number 19696    Answers: 1   Comments: 0

Let m be the smallest odd positive integer for which 1 + 2 + ... + m is a square of an integer and let n be the smallest even positive integer for which 1 + 2 + ... + n is a square of an integer. What is the value of m + n?

Letmbethesmallestoddpositiveintegerforwhich1+2+...+misasquareofanintegerandletnbethesmallestevenpositiveintegerforwhich1+2+...+nisasquareofaninteger.Whatisthevalueofm+n?

Question Number 22313    Answers: 1   Comments: 2

Question Number 19690    Answers: 1   Comments: 0

If ∣z − (4/z)∣ = 2, then find the maximum value of ∣z∣.

Ifz4z=2,thenfindthemaximumvalueofz.

Question Number 19786    Answers: 1   Comments: 0

For natural numbers x and y, let (x, y) denote the greatest common divisor of x and y. How many pairs of natural numbers x and y with x ≤ y satisfy the equation xy = x + y + (x, y)?

Fornaturalnumbersxandy,let(x,y)denotethegreatestcommondivisorofxandy.Howmanypairsofnaturalnumbersxandywithxysatisfytheequationxy=x+y+(x,y)?

Question Number 19785    Answers: 1   Comments: 0

If x^((x^4 )) = 4, what is the value of x^((x^2 )) + x^((x^8 )) ?

Ifx(x4)=4,whatisthevalueofx(x2)+x(x8)?

Question Number 19688    Answers: 1   Comments: 0

The vertices of a square are z_1 , z_2 , z_3 and z_4 taken in the anticlockwise order, then z_3 = (1) −iz_1 + (1 + i)z_2 (2) iz_1 + (1 + i)z_2 (3) z_1 + (1 + i)z_2 (4) (1 + i)z_1 + z_2

Theverticesofasquarearez1,z2,z3andz4takenintheanticlockwiseorder,thenz3=(1)iz1+(1+i)z2(2)iz1+(1+i)z2(3)z1+(1+i)z2(4)(1+i)z1+z2

Question Number 19687    Answers: 1   Comments: 0

Let z_1 , z_2 , z_3 be three vertices of an equilateral triangle circumscribing the circle ∣z∣ = (1/2). If z_1 = (1/2) + (((√3)i)/2) and z_1 , z_2 , z_3 are in anticlockwise sense then z_2 is

Letz1,z2,z3bethreeverticesofanequilateraltrianglecircumscribingthecirclez=12.Ifz1=12+3i2andz1,z2,z3areinanticlockwisesensethenz2is

Question Number 19683    Answers: 1   Comments: 0

In an A.P; the common difference is −2 and the largest term exceeds the middle term by 58. Find the smallest term of the A.P.

InanA.P;thecommondifferenceis2andthelargesttermexceedsthemiddletermby58.FindthesmallesttermoftheA.P.

Question Number 19679    Answers: 0   Comments: 1

Question Number 19675    Answers: 1   Comments: 1

Question Number 19668    Answers: 0   Comments: 2

  Pg 1827      Pg 1828      Pg 1829      Pg 1830      Pg 1831      Pg 1832      Pg 1833      Pg 1834      Pg 1835      Pg 1836   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com