Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1831

Question Number 19812    Answers: 1   Comments: 0

If tangent line of equation y = (x/(3 − x)) at x = a crossed line y = x at (b,b) Find b in terms of a

$$\mathrm{If}\:\mathrm{tangent}\:\mathrm{line}\:\mathrm{of}\:\mathrm{equation}\:{y}\:=\:\frac{{x}}{\mathrm{3}\:−\:{x}}\:\mathrm{at}\: \\ $$$${x}\:=\:{a}\:\mathrm{crossed}\:\mathrm{line}\:{y}\:=\:{x}\:\mathrm{at}\:\left({b},{b}\right) \\ $$$$\mathrm{Find}\:{b}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{a} \\ $$

Question Number 19811    Answers: 0   Comments: 2

If f(x) = (x +1)g(x) − 2 and g(3) = 4 Find the remainder if f(x) divided by (x + 1)(x − 3)

$$\mathrm{If}\:{f}\left({x}\right)\:=\:\left({x}\:+\mathrm{1}\right){g}\left({x}\right)\:−\:\mathrm{2}\:\mathrm{and}\:{g}\left(\mathrm{3}\right)\:=\:\mathrm{4} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{if}\:{f}\left({x}\right)\:\mathrm{divided}\:\mathrm{by}\: \\ $$$$\left({x}\:+\:\mathrm{1}\right)\left({x}\:−\:\mathrm{3}\right) \\ $$

Question Number 19809    Answers: 1   Comments: 0

If sin θ+cosec θ=2, then sin^2 θ+cosec^2 θ is equal to

$$\mathrm{If}\:\mathrm{sin}\:\theta+\mathrm{cosec}\:\theta=\mathrm{2},\:\mathrm{then}\:\mathrm{sin}^{\mathrm{2}} \theta+\mathrm{cosec}^{\mathrm{2}} \theta \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 19978    Answers: 1   Comments: 0

Let f be a one-to-one function from the set of natural numbers to itself such that f(mn) = f(m)f(n) for all natural numbers m and n. What is the least possible value of f(999)?

$$\mathrm{Let}\:{f}\:\mathrm{be}\:\mathrm{a}\:\mathrm{one}-\mathrm{to}-\mathrm{one}\:\mathrm{function}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{natural}\:\mathrm{numbers}\:\mathrm{to}\:\mathrm{itself} \\ $$$$\mathrm{such}\:\mathrm{that}\:{f}\left({mn}\right)\:=\:{f}\left({m}\right){f}\left({n}\right)\:\mathrm{for}\:\mathrm{all} \\ $$$$\mathrm{natural}\:\mathrm{numbers}\:{m}\:\mathrm{and}\:{n}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{least}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:{f}\left(\mathrm{999}\right)? \\ $$

Question Number 19799    Answers: 0   Comments: 2

For a natural number b, let N(b) denote the number of natural numbers a for which the equation x^2 + ax + b = 0 has integer roots. What is the smallest value of b for which N(b) = 20?

$$\mathrm{For}\:\mathrm{a}\:\mathrm{natural}\:\mathrm{number}\:{b},\:\mathrm{let}\:{N}\left({b}\right)\:\mathrm{denote} \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{natural}\:\mathrm{numbers}\:{a}\:\mathrm{for} \\ $$$$\mathrm{which}\:\mathrm{the}\:\mathrm{equation}\:{x}^{\mathrm{2}} \:+\:{ax}\:+\:{b}\:=\:\mathrm{0}\:\mathrm{has} \\ $$$$\mathrm{integer}\:\mathrm{roots}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{smallest} \\ $$$$\mathrm{value}\:\mathrm{of}\:{b}\:\mathrm{for}\:\mathrm{which}\:{N}\left({b}\right)\:=\:\mathrm{20}? \\ $$

Question Number 19796    Answers: 1   Comments: 1

Question Number 19795    Answers: 1   Comments: 0

One morning, each member of Manjul′s family drank an 8-ounce mixture of coffee and milk. The amounts of coffee and milk varied from cup to cup, but were never zero. Manjul drank 1/7-th of the total amount of milk and 2/17-th of the total amount of coffee. How many people are there in Manjul′s family?

$$\mathrm{One}\:\mathrm{morning},\:\mathrm{each}\:\mathrm{member}\:\mathrm{of}\:\mathrm{Manjul}'\mathrm{s} \\ $$$$\mathrm{family}\:\mathrm{drank}\:\mathrm{an}\:\mathrm{8}-\mathrm{ounce}\:\mathrm{mixture}\:\mathrm{of} \\ $$$$\mathrm{coffee}\:\mathrm{and}\:\mathrm{milk}.\:\mathrm{The}\:\mathrm{amounts}\:\mathrm{of}\:\mathrm{coffee} \\ $$$$\mathrm{and}\:\mathrm{milk}\:\mathrm{varied}\:\mathrm{from}\:\mathrm{cup}\:\mathrm{to}\:\mathrm{cup},\:\mathrm{but} \\ $$$$\mathrm{were}\:\mathrm{never}\:\mathrm{zero}.\:\mathrm{Manjul}\:\mathrm{drank}\:\mathrm{1}/\mathrm{7}-\mathrm{th} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{total}\:\mathrm{amount}\:\mathrm{of}\:\mathrm{milk}\:\mathrm{and}\:\mathrm{2}/\mathrm{17}-\mathrm{th} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{total}\:\mathrm{amount}\:\mathrm{of}\:\mathrm{coffee}.\:\mathrm{How} \\ $$$$\mathrm{many}\:\mathrm{people}\:\mathrm{are}\:\mathrm{there}\:\mathrm{in}\:\mathrm{Manjul}'\mathrm{s} \\ $$$$\mathrm{family}? \\ $$

Question Number 19794    Answers: 0   Comments: 0

In a triangle ABC with ∠BCA = 90°, the perpendicular bisector of AB intersects segments AB and AC at X and Y, respectively. If the ratio of the area of quadrilateral BXYC to the area of triangle ABC is 13 : 18 and BC = 12 then what is the length of AC?

$$\mathrm{In}\:\mathrm{a}\:\mathrm{triangle}\:{ABC}\:\mathrm{with}\:\angle{BCA}\:=\:\mathrm{90}°, \\ $$$$\mathrm{the}\:\mathrm{perpendicular}\:\mathrm{bisector}\:\mathrm{of}\:{AB} \\ $$$$\mathrm{intersects}\:\mathrm{segments}\:{AB}\:\mathrm{and}\:{AC}\:\mathrm{at}\:{X} \\ $$$$\mathrm{and}\:{Y},\:\mathrm{respectively}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{area}\:\mathrm{of}\:\mathrm{quadrilateral}\:{BXYC}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{area}\:\mathrm{of}\:\mathrm{triangle}\:{ABC}\:\mathrm{is}\:\mathrm{13}\::\:\mathrm{18}\:\mathrm{and} \\ $$$${BC}\:=\:\mathrm{12}\:\mathrm{then}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:{AC}? \\ $$

Question Number 19792    Answers: 2   Comments: 0

Let ABCD be a convex quadrilateral with ∠DAB = ∠BDC = 90°. Let the incircles of triangles ABD and BCD touch BD at P and Q, respectively, with P lying in between B and Q. If AD = 999 and PQ = 200 then what is the sum of the radii of the incircles of triangles ABD and BDC?

$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral} \\ $$$$\mathrm{with}\:\angle{DAB}\:=\:\angle{BDC}\:=\:\mathrm{90}°.\:\mathrm{Let}\:\mathrm{the} \\ $$$$\mathrm{incircles}\:\mathrm{of}\:\mathrm{triangles}\:{ABD}\:\mathrm{and}\:{BCD} \\ $$$$\mathrm{touch}\:{BD}\:\mathrm{at}\:{P}\:\mathrm{and}\:{Q},\:\mathrm{respectively}, \\ $$$$\mathrm{with}\:{P}\:\mathrm{lying}\:\mathrm{in}\:\mathrm{between}\:{B}\:\mathrm{and}\:{Q}.\:\mathrm{If} \\ $$$${AD}\:=\:\mathrm{999}\:\mathrm{and}\:{PQ}\:=\:\mathrm{200}\:\mathrm{then}\:\mathrm{what}\:\mathrm{is} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{radii}\:\mathrm{of}\:\mathrm{the}\:\mathrm{incircles}\:\mathrm{of} \\ $$$$\mathrm{triangles}\:{ABD}\:\mathrm{and}\:{BDC}? \\ $$

Question Number 19828    Answers: 1   Comments: 1

The speed of a train is reduced from 80km/h to 40km/h after the application of the brake. (i)how much further would the train travel before coming to rest (ii)assuming the acceleration is kept constant,how long will it take to bring the train to rest after the application of the brakes?

$${The}\:{speed}\:{of}\:{a}\:{train}\:{is}\:{reduced} \\ $$$${from}\:\mathrm{80}{km}/{h}\:{to}\:\mathrm{40}{km}/{h}\:{after} \\ $$$${the}\:{application}\:{of}\:{the}\:{brake}. \\ $$$$\left({i}\right){how}\:{much}\:{further}\:{would}\:{the}\: \\ $$$${train}\:{travel}\:{before}\:{coming}\:{to}\:{rest} \\ $$$$\left({ii}\right){assuming}\:{the}\:{acceleration}\:{is} \\ $$$${kept}\:{constant},{how}\:{long}\:{will}\:{it} \\ $$$${take}\:{to}\:{bring}\:{the}\:{train}\:{to}\:{rest} \\ $$$${after}\:{the}\:{application}\:{of}\:{the}\:{brakes}? \\ $$

Question Number 19774    Answers: 1   Comments: 0

A balloon is ascending vertically with an acceleration of 0.2 ms^(−2) . Two stones are dropped from it at an interval of 2 s. The distance between them when the second stone dropped is (take g = 9.8 ms^(−2) )

$$\mathrm{A}\:\mathrm{balloon}\:\mathrm{is}\:\mathrm{ascending}\:\mathrm{vertically}\:\mathrm{with} \\ $$$$\mathrm{an}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{0}.\mathrm{2}\:\mathrm{ms}^{−\mathrm{2}} .\:\mathrm{Two}\:\mathrm{stones} \\ $$$$\mathrm{are}\:\mathrm{dropped}\:\mathrm{from}\:\mathrm{it}\:\mathrm{at}\:\mathrm{an}\:\mathrm{interval}\:\mathrm{of}\:\mathrm{2}\:\mathrm{s}. \\ $$$$\mathrm{The}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{them}\:\mathrm{when}\:\mathrm{the} \\ $$$$\mathrm{second}\:\mathrm{stone}\:\mathrm{dropped}\:\mathrm{is}\:\left(\mathrm{take}\:{g}\:=\:\mathrm{9}.\mathrm{8}\right. \\ $$$$\left.\mathrm{ms}^{−\mathrm{2}} \right) \\ $$

Question Number 19760    Answers: 1   Comments: 0

If sin x + cos x + tan x + cosec x + cot x + sec x = 7, then find the value of sin 2x.

$$\mathrm{If}\:\mathrm{sin}\:{x}\:+\:\mathrm{cos}\:{x}\:+\:\mathrm{tan}\:{x}\:+\:\mathrm{cosec}\:{x}\:+ \\ $$$$\mathrm{cot}\:{x}\:+\:\mathrm{sec}\:{x}\:=\:\mathrm{7},\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{sin}\:\mathrm{2}{x}. \\ $$

Question Number 19758    Answers: 1   Comments: 1

Question Number 19741    Answers: 0   Comments: 1

If z = x + iy and arg(((z − 2)/(z + 2))) = (π/6), then find the locus of z.

$$\mathrm{If}\:{z}\:=\:{x}\:+\:{iy}\:\mathrm{and}\:\mathrm{arg}\left(\frac{{z}\:−\:\mathrm{2}}{{z}\:+\:\mathrm{2}}\right)\:=\:\frac{\pi}{\mathrm{6}},\:\mathrm{then} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:{z}. \\ $$

Question Number 19740    Answers: 1   Comments: 0

If ∣z^2 − 1∣ = ∣z∣^2 + 1, then z lies on

$$\mathrm{If}\:\mid{z}^{\mathrm{2}} \:−\:\mathrm{1}\mid\:=\:\mid{z}\mid^{\mathrm{2}} \:+\:\mathrm{1},\:\mathrm{then}\:{z}\:\mathrm{lies}\:\mathrm{on} \\ $$

Question Number 19739    Answers: 1   Comments: 0

If z = x + iy is a complex number satisfying ∣z + (i/2)∣^2 = ∣z − (i/2)∣^2 , then the locus of z is

$$\mathrm{If}\:{z}\:=\:{x}\:+\:{iy}\:\mathrm{is}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{number} \\ $$$$\mathrm{satisfying}\:\mid{z}\:+\:\frac{{i}}{\mathrm{2}}\mid^{\mathrm{2}} \:=\:\mid{z}\:−\:\frac{{i}}{\mathrm{2}}\mid^{\mathrm{2}} ,\:\mathrm{then} \\ $$$$\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:{z}\:\mathrm{is} \\ $$

Question Number 19738    Answers: 1   Comments: 1

Locus of the point z satisfying the equation ∣iz − 1∣ + ∣z − i∣ = 2 is

$$\mathrm{Locus}\:\mathrm{of}\:\mathrm{the}\:\mathrm{point}\:{z}\:\mathrm{satisfying}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mid{iz}\:−\:\mathrm{1}\mid\:+\:\mid{z}\:−\:{i}\mid\:=\:\mathrm{2}\:\mathrm{is} \\ $$

Question Number 19736    Answers: 1   Comments: 1

Question Number 19735    Answers: 1   Comments: 0

If z = λ + 3 + i(√(5 − λ^2 )), then the locus of z is a

$$\mathrm{If}\:{z}\:=\:\lambda\:+\:\mathrm{3}\:+\:{i}\sqrt{\mathrm{5}\:−\:\lambda^{\mathrm{2}} },\:\mathrm{then}\:\mathrm{the}\:\mathrm{locus} \\ $$$$\mathrm{of}\:{z}\:\mathrm{is}\:\mathrm{a} \\ $$

Question Number 19733    Answers: 1   Comments: 0

If ∣z + 1∣ = (√2)∣z − 1∣, then the locus described by the point z in the argand diagram is a

$$\mathrm{If}\:\mid{z}\:+\:\mathrm{1}\mid\:=\:\sqrt{\mathrm{2}}\mid{z}\:−\:\mathrm{1}\mid,\:\mathrm{then}\:\mathrm{the}\:\mathrm{locus} \\ $$$$\mathrm{described}\:\mathrm{by}\:\mathrm{the}\:\mathrm{point}\:{z}\:\mathrm{in}\:\mathrm{the}\:\mathrm{argand} \\ $$$$\mathrm{diagram}\:\mathrm{is}\:\mathrm{a} \\ $$

Question Number 19734    Answers: 1   Comments: 0

If the imaginary part of ((2z + 1)/(iz + 1)) is −2, then the locus of the point representing z in the complex plane is

$$\mathrm{If}\:\mathrm{the}\:\mathrm{imaginary}\:\mathrm{part}\:\mathrm{of}\:\frac{\mathrm{2}{z}\:+\:\mathrm{1}}{{iz}\:+\:\mathrm{1}}\:\mathrm{is}\:−\mathrm{2}, \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{the}\:\mathrm{point}\:\mathrm{representing} \\ $$$${z}\:\mathrm{in}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{plane}\:\mathrm{is} \\ $$

Question Number 19732    Answers: 1   Comments: 0

The locus of z given by ∣((z − 1)/(z − i))∣ = 1 is

$$\mathrm{The}\:\mathrm{locus}\:\mathrm{of}\:{z}\:\mathrm{given}\:\mathrm{by}\:\mid\frac{{z}\:−\:\mathrm{1}}{{z}\:−\:{i}}\mid\:=\:\mathrm{1}\:\mathrm{is} \\ $$

Question Number 19730    Answers: 1   Comments: 0

If z = x + iy and ∣z − 2i∣ = 1, then (1) z lies on x-axis (2) z lies on y-axis (3) z lies on a circle (4) None of these

$$\mathrm{If}\:{z}\:=\:{x}\:+\:{iy}\:\mathrm{and}\:\mid{z}\:−\:\mathrm{2}{i}\mid\:=\:\mathrm{1},\:\mathrm{then} \\ $$$$\left(\mathrm{1}\right)\:{z}\:\mathrm{lies}\:\mathrm{on}\:{x}-\mathrm{axis} \\ $$$$\left(\mathrm{2}\right)\:{z}\:\mathrm{lies}\:\mathrm{on}\:{y}-\mathrm{axis} \\ $$$$\left(\mathrm{3}\right)\:{z}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{a}\:\mathrm{circle} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{None}\:\mathrm{of}\:\mathrm{these} \\ $$

Question Number 19729    Answers: 1   Comments: 0

2x + 9y^2 = 4 2x^2 − 45y^2 + xy = 0 Find the value of xy

$$\mathrm{2}{x}\:+\:\mathrm{9}{y}^{\mathrm{2}} \:=\:\mathrm{4} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} \:−\:\mathrm{45}{y}^{\mathrm{2}} \:+\:{xy}\:=\:\mathrm{0} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{xy} \\ $$

Question Number 19709    Answers: 1   Comments: 0

In the cyclic quadrilateral ABCD AB=7,BC=8,CD=8,DA=15. Calculate the angle ADC and the length ofAC.

$${In}\:{the}\:{cyclic}\:{quadrilateral}\:{ABCD} \\ $$$${AB}=\mathrm{7},{BC}=\mathrm{8},{CD}=\mathrm{8},{DA}=\mathrm{15}. \\ $$$${Calculate}\:{the}\:{angle}\:{ADC}\:{and} \\ $$$${the}\:{length}\:{ofAC}. \\ $$

Question Number 19704    Answers: 1   Comments: 0

What is the sum (in base 10) of all the natural numbers less than 64 which have exactly three ones in their base 2 representation?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\left(\mathrm{in}\:\mathrm{base}\:\mathrm{10}\right)\:\mathrm{of}\:\mathrm{all}\:\mathrm{the} \\ $$$$\mathrm{natural}\:\mathrm{numbers}\:\mathrm{less}\:\mathrm{than}\:\mathrm{64}\:\mathrm{which} \\ $$$$\mathrm{have}\:\mathrm{exactly}\:\mathrm{three}\:\mathrm{ones}\:\mathrm{in}\:\mathrm{their}\:\mathrm{base}\:\mathrm{2} \\ $$$$\mathrm{representation}? \\ $$

  Pg 1826      Pg 1827      Pg 1828      Pg 1829      Pg 1830      Pg 1831      Pg 1832      Pg 1833      Pg 1834      Pg 1835   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com