Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1831

Question Number 26625    Answers: 1   Comments: 0

3y−2x+7=0 x^2 −4y^2 −21=0

$$\mathrm{3y}−\mathrm{2x}+\mathrm{7}=\mathrm{0} \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{4y}^{\mathrm{2}} −\mathrm{21}=\mathrm{0} \\ $$

Question Number 26623    Answers: 2   Comments: 0

distance between 2 places A and B on road is 70 km. a car starts from A and other from B .if they travel in same direction they will meet after 7 hours. if they travel towards each other they will meet after 1 hour then find their speeds

$$\mathrm{distance}\:\mathrm{between}\:\mathrm{2}\:\mathrm{places}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{on} \\ $$$$\mathrm{road}\:\mathrm{is}\:\mathrm{70}\:\mathrm{km}.\:\mathrm{a}\:\mathrm{car}\:\mathrm{starts}\:\mathrm{from}\:\mathrm{A}\:\mathrm{and}\:\mathrm{other}\: \\ $$$$\mathrm{from}\:\mathrm{B}\:.\mathrm{if}\:\mathrm{they}\:\mathrm{travel}\:\mathrm{in}\:\mathrm{same}\:\mathrm{direction} \\ $$$$\mathrm{they}\:\mathrm{will}\:\mathrm{meet}\:\mathrm{after}\:\mathrm{7}\:\mathrm{hours}.\:\mathrm{if}\:\mathrm{they}\:\mathrm{travel} \\ $$$$\mathrm{towards}\:\mathrm{each}\:\mathrm{other}\:\mathrm{they}\:\mathrm{will}\:\mathrm{meet}\:\mathrm{after} \\ $$$$\mathrm{1}\:\mathrm{hour}\:\mathrm{then}\:\mathrm{find}\:\mathrm{their}\:\mathrm{speeds} \\ $$

Question Number 26591    Answers: 1   Comments: 1

Prove lim_(x→−1) (1+x)ln (1+x)=0

$$\mathrm{Prove} \\ $$$$\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\left(\mathrm{1}+{x}\right)\mathrm{ln}\:\left(\mathrm{1}+{x}\right)=\mathrm{0} \\ $$

Question Number 26583    Answers: 0   Comments: 2

find the decomposition in C[x] then R[x] for the rationsl fraction F(x)= ((1 )/(x^(2n) −1)) .with n integer not 0

$${find}\:{the}\:{decomposition}\:{in}\:\mathbb{C}\left[{x}\right]\:{then}\:\mathbb{R}\left[{x}\right] \\ $$$${for}\:{the}\:{rationsl}\:{fraction} \\ $$$${F}\left({x}\right)=\:\:\frac{\mathrm{1}\:}{{x}^{\mathrm{2}{n}} −\mathrm{1}}\:\:.{with}\:{n}\:{integer}\:{not}\:\mathrm{0} \\ $$

Question Number 26582    Answers: 0   Comments: 1

p is a polynomial having the roots x_1 ,x_2 ,...x_n with x_i ≠ x_j fori≠j give the decomposition of the fravtion F(x)= ((p^′ (x))/(p(x)))

$${p}\:{is}\:{a}\:{polynomial}\:{having}\:{the}\:{roots}\:{x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,...{x}_{{n}} \\ $$$${with}\:{x}_{{i}} \neq\:{x}_{{j}} \:{fori}\neq{j}\:{give}\:{the}\:{decomposition} \\ $$$${of}\:{the}\:{fravtion}\:{F}\left({x}\right)=\:\frac{{p}^{'} \left({x}\right)}{{p}\left({x}\right)} \\ $$

Question Number 26581    Answers: 0   Comments: 0

Question Number 26580    Answers: 0   Comments: 0

Question Number 26573    Answers: 0   Comments: 0

let put H_n = Σ_(k=1) ^(k=n) (1/k) prove that Σ_(n=1) ^∝ (H_n /n^2 ) = 2ξ(3)

$${let}\:{put}\:\:{H}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\:\frac{\mathrm{1}}{{k}}\:\:\:\:\:\:{prove}\:{that}\:\:\:\sum_{{n}=\mathrm{1}} ^{\propto} \:\frac{{H}_{{n}} }{{n}^{\mathrm{2}} }\:\:=\:\:\mathrm{2}\xi\left(\mathrm{3}\right) \\ $$

Question Number 26572    Answers: 0   Comments: 0

find the radius ofconvergence for the serie Σ_(n≥0) ( e^(√(n+1)) −e^(√n) )z^n with z from C

$${find}\:{the}\:{radius}\:{ofconvergence}\:{for}\:{the}\:{serie} \\ $$$$\sum_{{n}\geqslant\mathrm{0}} \left(\:{e}^{\sqrt{{n}+\mathrm{1}}} −{e}^{\sqrt{{n}}} \right){z}^{{n}} \:\:\:\:\:\:{with}\:{z}\:{from}\:\mathbb{C} \\ $$$$ \\ $$

Question Number 26571    Answers: 0   Comments: 1

let give I(x)= ∫_1 ^∝ ((t−E(t))/t^(x+1) )dt prove that ξ(x)= (x/(x−1)) −xI(x) then chow that (x−1)_(x−1^(+ ew) ) ξ(x)−−>1 we remind ξ(x) = Σ_(n≥1) (1/n^x ) and x>1

$${let}\:{give}\:\:{I}\left({x}\right)=\:\:\int_{\mathrm{1}} ^{\propto} \:\frac{{t}−{E}\left({t}\right)}{{t}^{{x}+\mathrm{1}} }{dt}\:\:\:{prove}\:{that} \\ $$$$\xi\left({x}\right)=\:\frac{{x}}{{x}−\mathrm{1}}\:−{xI}\left({x}\right)\:{then}\:{chow}\:{that}\:\left({x}−\mathrm{1}\right)_{{x}−\mathrm{1}^{+\:{ew}} } \xi\left({x}\right)−−>\mathrm{1} \\ $$$${we}\:{remind}\:\:\xi\left({x}\right)\:=\:\sum_{{n}\geqslant\mathrm{1}} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:\:{and}\:\:{x}>\mathrm{1} \\ $$

Question Number 26570    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ e^(−px) /sinx/dx with p>0

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} {e}^{−{px}} /{sinx}/{dx}\:\:\:{with}\:{p}>\mathrm{0} \\ $$

Question Number 26569    Answers: 0   Comments: 1

find the value of ∫_0 ^(1 ) x E((1/x))dx

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}\:} {x}\:{E}\left(\frac{\mathrm{1}}{{x}}\right){dx}\: \\ $$

Question Number 26568    Answers: 0   Comments: 0

let give ξ(x)= Σ_(n=1) ^∝ (1/n^x ) prove that ξ(x)−_(x−>∝) 1∼2^(−x)

$${let}\:{give}\:\xi\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\propto} \frac{\mathrm{1}}{{n}^{{x}} }\:\:{prove}\:{that}\:\xi\left({x}\right)−_{{x}−>\propto} \mathrm{1}\sim\mathrm{2}^{−{x}} \\ $$

Question Number 26567    Answers: 1   Comments: 4

find the value of Σ_(n≥2) (((−)^n )/(n(n−1))) x^n

$${find}\:{the}\:{value}\:{of}\:\:\:\sum_{{n}\geqslant\mathrm{2}} \:\frac{\left(−\right)^{{n}} }{{n}\left({n}−\mathrm{1}\right)}\:{x}^{{n}} \\ $$

Question Number 26566    Answers: 0   Comments: 1

let give Γ(x)= ∫_0 ^∞ t^(x−1) e^(−t) dt with x>0 prove that lim _(n−>∝) ∫_0 ^n (1−(t/n))^n t^(x−1) dt = Γ(x)

$${let}\:{give}\:\Gamma\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt}\:{with}\:{x}>\mathrm{0}\:{prove}\:{that} \\ $$$$\:{lim}\:_{{n}−>\propto} \int_{\mathrm{0}} ^{{n}} \:\left(\mathrm{1}−\frac{{t}}{{n}}\right)^{{n}} {t}^{{x}−\mathrm{1}} {dt}\:\:=\:\Gamma\left({x}\right) \\ $$

Question Number 26565    Answers: 0   Comments: 1

find the value of Σ_(n=0) ^∝ (((−1)^n )/(3n+1))

$${find}\:{the}\:{value}\:{of}\:\:\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{3}{n}+\mathrm{1}} \\ $$

Question Number 26564    Answers: 0   Comments: 0

let give Γ(x)= ∫_0 ^∞ t^(x−1) e^(−t) dt and x>0(gamma euler function) prove that Γ(x) =lim_(n−>∝) (((n!) n^x )/(n(n+1)(n+2)...(n+x)))

$${let}\:{give}\:\Gamma\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt}\:\:\:{and}\:\:\:{x}>\mathrm{0}\left({gamma}\:{euler}\:{function}\right) \\ $$$${prove}\:{that}\:\:\Gamma\left({x}\right)\:\:={lim}_{{n}−>\propto} \:\frac{\left({n}!\right)\:{n}^{{x}} }{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)...\left({n}+{x}\right)} \\ $$

Question Number 26563    Answers: 1   Comments: 1

find the value of ∫_0 ^∞ ((1−cosx)/x^2 ) dx

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−{cosx}}{{x}^{\mathrm{2}} }\:{dx} \\ $$

Question Number 26584    Answers: 0   Comments: 4

∫_a ^x (x−t)^5 y(t)dt=4x^6 y(x)=...

$$\int_{{a}} ^{{x}} \left({x}−{t}\right)^{\mathrm{5}} {y}\left({t}\right){dt}=\mathrm{4}{x}^{\mathrm{6}} \\ $$$${y}\left({x}\right)=... \\ $$

Question Number 26576    Answers: 0   Comments: 4

Find all f : R→R such that f(x+f(x)+f(y))=f(y+f(x))+x+f(y)−f(f(y)) for all x, y ∈ R

$$\mathrm{Find}\:\mathrm{all}\:{f}\::\:\mathrm{R}\rightarrow\mathrm{R}\:\mathrm{such}\:\mathrm{that} \\ $$$${f}\left({x}+{f}\left({x}\right)+{f}\left({y}\right)\right)={f}\left({y}+{f}\left({x}\right)\right)+{x}+{f}\left({y}\right)−{f}\left({f}\left({y}\right)\right)\: \\ $$$$\mathrm{for}\:\mathrm{all}\:{x},\:\mathrm{y}\:\in\:\mathrm{R} \\ $$

Question Number 26575    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ e^(−[x]) sinxdx in that [x]=E(x)

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left[{x}\right]} {sinxdx}\:\:\:{in}\:{that}\:\left[{x}\right]={E}\left({x}\right) \\ $$

Question Number 26574    Answers: 0   Comments: 1

study the nature of the serie Σ_(n=2) ^∝ ((cosn)/(√(n+(−1)^n ))) z^n

$${study}\:{the}\:{nature}\:{of}\:{the}\:{serie}\:\:\:\sum_{{n}=\mathrm{2}} ^{\propto} \:\:\frac{{cosn}}{\sqrt{{n}+\left(−\mathrm{1}\right)^{{n}} }}\:{z}^{{n}} \\ $$

Question Number 26561    Answers: 0   Comments: 0

Express sin(20)° in surd form.

$$\mathrm{Express}\:\:\mathrm{sin}\left(\mathrm{20}\right)°\:\:\mathrm{in}\:\mathrm{surd}\:\mathrm{form}. \\ $$

Question Number 26559    Answers: 0   Comments: 1

let put F(x)= ∫_0 ^∞ e^(−tx) ((sint)/t) dt with x≥0 we accept that F is class C^1 on [0,∝[ calculate (∂F/∂x) and find F(x) then find the value of ∫_0 ^∞ ((sint)/t) dt

$${let}\:{put}\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{tx}} \:\frac{{sint}}{{t}}\:{dt}\:\:\:{with}\:\:{x}\geqslant\mathrm{0} \\ $$$${we}\:{accept}\:{that}\:{F}\:{is}\:{class}\:{C}^{\mathrm{1}} \:{on}\:\left[\mathrm{0},\propto\left[\right.\right. \\ $$$${calculate}\:\:\frac{\partial{F}}{\partial{x}}\:\:{and}\:{find}\:{F}\left({x}\right) \\ $$$${then}\:\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sint}}{{t}}\:{dt} \\ $$

Question Number 26558    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ ((sinx)/(x(1+x^2 )))dx

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sinx}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx} \\ $$

Question Number 26557    Answers: 0   Comments: 0

  Pg 1826      Pg 1827      Pg 1828      Pg 1829      Pg 1830      Pg 1831      Pg 1832      Pg 1833      Pg 1834      Pg 1835   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com