Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1830
Question Number 26772 Answers: 1 Comments: 0
$$\mathrm{With}\:\mathrm{a}\:\mathrm{center}\:\boldsymbol{\mathrm{on}}\:\mathrm{a}\:\mathrm{given}\:\mathrm{circle}\:\mathrm{of} \\ $$$$\mathrm{radius}\:\mathrm{r}\:,\mathrm{an}\:\mathrm{arc}\:\mathrm{has}\:\mathrm{been}\:\mathrm{drawn}\:\mathrm{in}\:\mathrm{order} \\ $$$$\mathrm{to}\:\mathrm{divide}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{in}\:\mathrm{two}\:\mathrm{equal} \\ $$$$\left(\mathrm{in}\:\mathrm{area}\right)\:\mathrm{parts}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{in}\:\mathrm{terms} \\ $$$$\mathrm{of}\:\:\mathrm{r}\:\left(\mathrm{radius}\:\mathrm{of}\:\mathrm{given}\:\mathrm{circle}\right)?\: \\ $$
Question Number 26771 Answers: 0 Comments: 1
$$\underset{\:\mathrm{0}} {\overset{\:\:\:\left[{x}\right]} {\int}}\frac{\mathrm{2}^{{x}} }{\mathrm{2}^{\left[{x}\right]} }\:{dx}\:= \\ $$
Question Number 26770 Answers: 0 Comments: 1
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left({n}\:!\right)^{\mathrm{1}/{n}} }{{n}}\:= \\ $$
Question Number 26768 Answers: 0 Comments: 0
$${find}\:{the}\:{nature}\:{of}\:{U}_{{n}} \:\:=\sum_{{p}=\mathrm{0}} ^{{p}={n}} \:\:\frac{\mathrm{1}}{{C}_{{n}} ^{{p}} }\:\:. \\ $$
Question Number 26769 Answers: 1 Comments: 1
$$\underset{\:\mathrm{0}} {\overset{\infty} {\int}}\:\:\frac{{dx}}{\left[{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:\right]^{\mathrm{3}} }\:=\: \\ $$
Question Number 26764 Answers: 0 Comments: 3
$${find}\:\:{lim}_{{n}−>\propto} \:\frac{\mathrm{1}}{{n}}\:{ln}\left(\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\left(\mathrm{1}−\:\frac{{k}}{{n}}\right)\right). \\ $$
Question Number 26761 Answers: 1 Comments: 0
$${let}\:{put}\:\:{s}_{{n}} =\:\frac{\sum_{{k}=\mathrm{0}} ^{{k}={n}} \left(\mathrm{2}{k}+\mathrm{1}\right)}{\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:{k}} \\ $$$${find}\:{lim}_{{n}−>\propto} {s}_{{n}} \\ $$
Question Number 26759 Answers: 1 Comments: 1
$${find}\:\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\:\propto} \:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)}\:. \\ $$
Question Number 26758 Answers: 0 Comments: 1
$${let}\:{give}\:{D}=\left\{\left(\:\:{x},{y}\:\right)\in\mathbb{R}^{\mathrm{2}} /{x}^{\mathrm{2}} −{x}\:+{y}^{\mathrm{2}} \leqslant\:\mathrm{4}\:{and}\:\:\mathrm{0}\leqslant{y}\leqslant\mathrm{1}\right\} \\ $$$${calculate}\:\int\int_{{D}} {ln}\left({xy}\right)\sqrt{\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} {dxdy}\:\:} \\ $$
Question Number 26757 Answers: 0 Comments: 3
$${give}\:{the}\:{decomposition}\:{of}\:{F}\left({x}\right)\:=\:\:\:\frac{\mathrm{1}}{{x}^{\mathrm{2}{n}} +\mathrm{1}}\:\:{inside}\:\mathbb{C}\left[{x}\right] \\ $$$${then}\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}{n}} }\:\:\:\:\:\:{n}\in\mathbb{N}\:\:{and}\:{n}\neq{o} \\ $$
Question Number 26756 Answers: 0 Comments: 2
$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{{x}+\:{e}^{{x}} }\:=\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:{A}_{{n}} \\ $$$${with}\:\:{A}_{{n}} \:=\:\int_{\mathrm{0}} ^{{n}+\mathrm{1}} \:{t}^{{n}} \:{e}^{−{t}} {dt}\:. \\ $$
Question Number 26755 Answers: 1 Comments: 0
$${find}\:\:\int\:\:\frac{{dx}}{{x}^{\mathrm{6}} −\mathrm{1}}\:\:. \\ $$
Question Number 26751 Answers: 0 Comments: 1
$${by}\:{using}\:{fourier}\:{serie}\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 26749 Answers: 0 Comments: 1
$${let}\:{give}\:\:{S}_{{n}} \:=\:\:\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \:\:\:\frac{\mathrm{1}}{{i}^{\mathrm{2}} {j}^{\mathrm{2}} }\:\:\:{find}\:{lim}_{{n}−>\propto} \:\:{S}_{{n}} \:\:. \\ $$
Question Number 26738 Answers: 1 Comments: 1
Question Number 26733 Answers: 1 Comments: 1
Question Number 26732 Answers: 0 Comments: 1
Question Number 27002 Answers: 2 Comments: 4
Question Number 26723 Answers: 0 Comments: 2
$$\mathcal{T}{ake}\:{a}\:{point}\:\boldsymbol{{on}}\:{a}\:{given}\:{circle} \\ $$$${as}\:{a}\:{center}\:{and}\:{draw}\:{an}\:{arc} \\ $$$${which}\:{divide}\:{the}\:{given}\:{circle} \\ $$$${into}\:{two}\:{equal}\left(\mathrm{in}\:\mathrm{area}\right)\:{regions}.{Use}\:{only} \\ $$$${Eucledean}\:{tools}. \\ $$
Question Number 26722 Answers: 0 Comments: 0
$$\underset{{x}\rightarrow−\mathrm{1}^{+} } {\mathrm{lim}}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +...\mathrm{up}\:\mathrm{to}\:\infty\right)=? \\ $$$$\underset{{x}\rightarrow−\mathrm{1}^{−} } {\mathrm{lim}}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +...\mathrm{up}\:\mathrm{to}\:\infty\right)=? \\ $$
Question Number 26721 Answers: 0 Comments: 1
$$−\mathrm{2}{y}\left({y}−\mathrm{12}\right)\left({y}−\mathrm{1}\right){or}\left({y}−\mathrm{12}\right)\left(−\mathrm{2}{y}^{\mathrm{2}} −\mathrm{2}{y}\right)\:\:{both}\:{are}\:{same}. \\ $$
Question Number 26713 Answers: 0 Comments: 0
$$\mathrm{2sin}\:\left(\mathrm{3}{x}\right)<\mathrm{1} \\ $$
Question Number 26712 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\mid{x}\mid\:<\:\mathrm{1},\:\mathrm{then}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:{x}^{{n}} \:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +{x}^{\mathrm{4}} +...\right)^{\mathrm{2}} \:\mathrm{is} \\ $$
Question Number 26711 Answers: 0 Comments: 1
$$\mathrm{ABC}\:\mathrm{is}\:\mathrm{a}\:\mathrm{right}\:\mathrm{tringle}.\mathrm{prove}\:\mathrm{it}? \\ $$
Question Number 26703 Answers: 0 Comments: 0
$$\mathrm{The}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{dissimilar}\:\mathrm{terms}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} +...+{x}_{{n}} \right)^{\mathrm{3}} \:\mathrm{is} \\ $$
Question Number 26694 Answers: 1 Comments: 0
$${divide}\:{x}^{\mathrm{6}} −{y}^{\mathrm{6}} \:{by}\:{the}\:{product}\:{of}\:{x}^{\mathrm{2}} +{x}^{} {y}+{y}^{\mathrm{2}\:} \:{and}\:{x}−{y}. \\ $$
Pg 1825 Pg 1826 Pg 1827 Pg 1828 Pg 1829 Pg 1830 Pg 1831 Pg 1832 Pg 1833 Pg 1834
Terms of Service
Privacy Policy
Contact: info@tinkutara.com