Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1830

Question Number 26438    Answers: 1   Comments: 0

Question Number 26425    Answers: 0   Comments: 0

A body is projected vertically upward with an initial velocity of u. Another Another body is projected with the same initial velocity, t seconds after the first. If T is the time when the two bodies meet, and g the acceleration due to gravity, Show that T = ((2u + gt)/(2g))

$$\mathrm{A}\:\mathrm{body}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{vertically}\:\mathrm{upward}\:\mathrm{with}\:\mathrm{an}\:\mathrm{initial}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{u}.\:\mathrm{Another} \\ $$$$\mathrm{Another}\:\mathrm{body}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{with}\:\mathrm{the}\:\mathrm{same}\:\mathrm{initial}\:\mathrm{velocity},\:\mathrm{t}\:\mathrm{seconds}\:\mathrm{after} \\ $$$$\mathrm{the}\:\mathrm{first}.\:\mathrm{If}\:\:\mathrm{T}\:\mathrm{is}\:\mathrm{the}\:\mathrm{time}\:\mathrm{when}\:\mathrm{the}\:\mathrm{two}\:\mathrm{bodies}\:\mathrm{meet},\:\mathrm{and}\:\mathrm{g}\:\mathrm{the}\:\mathrm{acceleration} \\ $$$$\mathrm{due}\:\mathrm{to}\:\mathrm{gravity},\:\mathrm{Show}\:\mathrm{that}\:\:\:\boldsymbol{\mathrm{T}}\:=\:\frac{\mathrm{2u}\:+\:\mathrm{gt}}{\mathrm{2g}} \\ $$

Question Number 26424    Answers: 0   Comments: 0

The front of a train 80m long passes a signal at a speed of 72km/hr. If the rear of the train passes the signal 5s later, Find (a) The magnitude of the acceleration of the train. (b) The speed at which the rear of the train passes the signal.

$$\mathrm{The}\:\mathrm{front}\:\mathrm{of}\:\mathrm{a}\:\mathrm{train}\:\mathrm{80m}\:\mathrm{long}\:\mathrm{passes}\:\mathrm{a}\:\mathrm{signal}\:\mathrm{at}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{72km}/\mathrm{hr}.\:\mathrm{If}\:\mathrm{the} \\ $$$$\mathrm{rear}\:\mathrm{of}\:\mathrm{the}\:\mathrm{train}\:\mathrm{passes}\:\mathrm{the}\:\mathrm{signal}\:\mathrm{5s}\:\mathrm{later},\:\mathrm{Find} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{The}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{train}. \\ $$$$\left(\mathrm{b}\right)\:\mathrm{The}\:\mathrm{speed}\:\mathrm{at}\:\mathrm{which}\:\mathrm{the}\:\mathrm{rear}\:\mathrm{of}\:\mathrm{the}\:\mathrm{train}\:\mathrm{passes}\:\mathrm{the}\:\mathrm{signal}. \\ $$

Question Number 26405    Answers: 1   Comments: 0

Question Number 26403    Answers: 0   Comments: 5

developp the function f(x)=/x/ 2π periodic in fourier serie .(f even)

$${developp}\:{the}\:{function}\:{f}\left({x}\right)=/{x}/\:\mathrm{2}\pi \\ $$$${periodic}\:{in}\:{fourier}\:{serie}\:.\left({f}\:{even}\right) \\ $$

Question Number 26402    Answers: 1   Comments: 2

find the nature of the serie Σ_(n=0) ^∝ ((n!)/(1+2^n )) .

$${find}\:{the}\:{nature}\:{of}\:{the}\:{serie}\:\:\sum_{{n}=\mathrm{0}} ^{\propto} \frac{{n}!}{\mathrm{1}+\mathrm{2}^{{n}} }\:\:. \\ $$

Question Number 26401    Answers: 1   Comments: 1

find the sum of Σ_(n=1) ^∝ (1/(n 2^n )) .

$${find}\:{the}\:{sum}\:{of}\:\: \\ $$$$\sum_{{n}=\mathrm{1}} ^{\propto} \:\:\frac{\mathrm{1}}{{n}\:\:\mathrm{2}^{{n}} }\:\:. \\ $$

Question Number 26400    Answers: 1   Comments: 0

find the sequence (u_n ) wich verify u_n −2 u_(n−1) +1= 2^n

$${find}\:{the}\:{sequence}\:\left({u}_{{n}} \right)\:{wich}\:{verify}\:{u}_{{n}} \:−\mathrm{2}\:{u}_{{n}−\mathrm{1}} \:+\mathrm{1}=\:\mathrm{2}^{{n}} \\ $$

Question Number 26399    Answers: 2   Comments: 0

calculate ∫∫ _D cos(x^2 +y^2 )dxdy with D=C(o.(√(π/2))).

$${calculate}\:\:\int\int\:_{{D}} {cos}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dxdy}\:\:\:{with}\:\:{D}={C}\left({o}.\sqrt{\frac{\pi}{\mathrm{2}}}\right). \\ $$

Question Number 26398    Answers: 2   Comments: 2

find the value of ∫∫_D x^2 y dxdy on the domain D={(x.y)∈R^2 / x^2 +y^2 −2x≤0 and y≥0}

$${find}\:{the}\:{value}\:{of}\:\:\int\int_{{D}} \:{x}^{\mathrm{2}} {y}\:{dxdy}\:\:\:{on}\:{the}\:{domain} \\ $$$${D}=\left\{\left({x}.{y}\right)\in{R}^{\mathrm{2}} /\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:−\mathrm{2}{x}\leqslant\mathrm{0}\:{and}\:{y}\geqslant\mathrm{0}\right\} \\ $$

Question Number 26397    Answers: 2   Comments: 1

find ∫ (dx/(x(√(1+x^2 )))) and calculate ∫_1 ^3 (dx/(x(√(1+x^2 ))))

$${find}\:\int\:\:\frac{{dx}}{{x}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:{and}\:{calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\frac{{dx}}{{x}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$

Question Number 26396    Answers: 1   Comments: 1

find the value of ∫_0 ^(1 ) (dx/(x^2 +2x +5)) .

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}\:} \:\:\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{2}{x}\:+\mathrm{5}}\:. \\ $$

Question Number 26395    Answers: 1   Comments: 0

find ∫ (dx/(x(√(x^2 +x−1))))

$${find}\:\:\int\:\:\frac{{dx}}{{x}\sqrt{{x}^{\mathrm{2}} +{x}−\mathrm{1}}}\:\: \\ $$

Question Number 26382    Answers: 0   Comments: 1

Question Number 26381    Answers: 0   Comments: 9

Question Number 26380    Answers: 0   Comments: 0

Question Number 26389    Answers: 0   Comments: 1

Question Number 26368    Answers: 0   Comments: 1

y=a^(arctg(√x)) derivative ?

$${y}={a}^{\mathrm{arc}{tg}\sqrt{{x}}} \\ $$$${derivative}\:? \\ $$

Question Number 26365    Answers: 0   Comments: 1

y=log_a (x^2 −16)

$${y}=\mathrm{log}_{{a}} \left({x}^{\mathrm{2}} −\mathrm{16}\right) \\ $$

Question Number 26364    Answers: 0   Comments: 1

y=x^2 (x−1)^2 min=? max=? help pls

$${y}={x}^{\mathrm{2}} \left({x}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$${min}=?\:\:\:{max}=? \\ $$$${help}\:{pls} \\ $$

Question Number 26363    Answers: 0   Comments: 1

lim_(x→0) (((√(1+xsin x))−(√(cos 2x)))/(tg^2 (x/2)))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{\mathrm{1}+{x}\mathrm{sin}\:{x}}−\sqrt{\mathrm{cos}\:\mathrm{2}{x}}}{{tg}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}} \\ $$

Question Number 26362    Answers: 0   Comments: 0

find the value of ∫_0 ^∝ e^(−x) lnx dx for that use A_n = ∫_0 ^n (1− (t/n))^(n−1) ln(t) dt .

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\propto} {e}^{−{x}} {lnx}\:{dx}\:\:\:{for}\:{that}\:{use} \\ $$$${A}_{{n}} \:\:=\:\:\:\int_{\mathrm{0}} ^{{n}} \:\left(\mathrm{1}−\:\frac{{t}}{{n}}\right)^{{n}−\mathrm{1}} {ln}\left({t}\right)\:{dt}\:\:. \\ $$

Question Number 26374    Answers: 1   Comments: 0

show that if arg(((z_1 + z_2 )/(z_1 − z_2 ))) = (π/2) then ∣z_1 ∣ = ∣z_2 ∣

$$\mathrm{show}\:\mathrm{that}\:\:\mathrm{if}\:\:\:\:\mathrm{arg}\left(\frac{\mathrm{z}_{\mathrm{1}} \:+\:\mathrm{z}_{\mathrm{2}} }{\mathrm{z}_{\mathrm{1}} \:−\:\mathrm{z}_{\mathrm{2}} }\right)\:=\:\frac{\pi}{\mathrm{2}}\:\:\:\:\mathrm{then}\:\:\:\:\mid\mathrm{z}_{\mathrm{1}} \mid\:=\:\mid\mathrm{z}_{\mathrm{2}} \mid \\ $$

Question Number 26360    Answers: 0   Comments: 1

find the value of ∫_0 ^( ∝ ) ((cos(αx))/(1+x^2 )) dx .

$$\:\:{find}\:{the}\:{value}\:{of}\:\:\:\:\int_{\mathrm{0}} ^{\:\propto\:} \:\frac{{cos}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\:. \\ $$

Question Number 26352    Answers: 1   Comments: 0

x(x+9)=(x+3)(x+7)−10

$${x}\left({x}+\mathrm{9}\right)=\left({x}+\mathrm{3}\right)\left({x}+\mathrm{7}\right)−\mathrm{10} \\ $$

Question Number 26348    Answers: 1   Comments: 1

  Pg 1825      Pg 1826      Pg 1827      Pg 1828      Pg 1829      Pg 1830      Pg 1831      Pg 1832      Pg 1833      Pg 1834   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com