Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1828
Question Number 26055 Answers: 1 Comments: 0
$${calculate}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{1}/\mathrm{2}} {dt} \\ $$
Question Number 26054 Answers: 0 Comments: 0
$$\left.{if}\:\:\left(\mathrm{1}+{cos}\left({x}\right)\right)^{−\mathrm{1}} \:=\:{a}_{\mathrm{0}} /_{\mathrm{2}} \:\:+\sum_{{n}=\mathrm{1}} ^{{n}=\propto} \:{a}_{{n}} \:{cos}\left({nx}\right)\right) \\ $$$${find}\:{a}_{\mathrm{0}} \:{and}\:\:{a}_{{n}} ...{you}\:{can}\:{use}\:{fourier} \\ $$$${series}. \\ $$$$ \\ $$
Question Number 26053 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{9x}\:+\:\mathrm{2}\:=\:\mathrm{0}\:\:\mathrm{and}\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{kx}\:+\:\mathrm{5}\:=\:\mathrm{0}\:\:\mathrm{have}\:\mathrm{a}\:\mathrm{common}\:\mathrm{root},\:\mathrm{show}\:\mathrm{that}\: \\ $$$$\mathrm{2k}^{\mathrm{2}} \:+\:\mathrm{63k}\:−\:\mathrm{414}\:=\:\mathrm{0}\:,\:\:\mathrm{hence}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{k}\:\:\mathrm{such}\:\mathrm{that}\:\mathrm{k}\:>\:\mathrm{9}.\mathrm{3} \\ $$
Question Number 26050 Answers: 1 Comments: 0
Question Number 26047 Answers: 2 Comments: 6
Question Number 26046 Answers: 1 Comments: 0
$${x}^{\mathrm{3}} +\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} }=\mathrm{18}\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{valu}\:\mathrm{of}\:{x}+\frac{\mathrm{1}}{{x}} \\ $$
Question Number 26042 Answers: 0 Comments: 2
$${ax}^{\mathrm{2}} −{bx}=\mathrm{0} \\ $$
Question Number 26040 Answers: 0 Comments: 0
Question Number 26110 Answers: 0 Comments: 0
$${let}\:{s}\:{give}\:{n}\:{from}\:{N}\:\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sin}\left({nx}\right)}{{sinx}}\:{dx}\:. \\ $$
Question Number 26036 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{square}\:\mathrm{if}\:\mathrm{the}\:\mathrm{sum} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{diagonals}\:\mathrm{is}\:\mathrm{100}\:\mathrm{cm}. \\ $$
Question Number 26031 Answers: 0 Comments: 0
$${calculate}\:{the}\:{number}\:{of}\:{protons}\:{which}\:{would}\:{have}\:{a}\:{charge}\:{of}\:{one}\:{coulomb}\:{charge}\left({Proton}\:{Charge}=\mathrm{1}.\mathrm{6}×\mathrm{10}^{−\mathrm{19}} {C}\right). \\ $$
Question Number 26024 Answers: 0 Comments: 0
$$\left.{e}\:{give}\:{a}\:{element}\:{from}\right]\mathrm{0}.\propto\left[\:\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left(\:{ax}^{\mathrm{2}} \right)\right. \\ $$$${and}\:\:\int_{\mathrm{0}} ^{\infty} \:{sin}\left(\:{ax}^{\mathrm{2}} \right){dx}. \\ $$
Question Number 26023 Answers: 0 Comments: 0
$${answer}\:{to}\:{question}\mathrm{25980}\:{key}\:{of}\:{slution}\:{we}\:{develop}\:\:{the} \\ $$$${foction}\:{f}\left({x}\right)\:=\:{sin}\left({px}\right)\:{at}\:{fourier}\:{serie}\left(\left({f}\:\mathrm{2}\pi\:{periodic}\right)\right. \\ $$$${f}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{{n}=\propto} \:{a}_{{n}} {sin}\left({nx}\right)\:{and}\:\:{a}_{{n}} =\:\mathrm{2}/{T}\:\int_{\left[{T}\right]} {sin}\left({px}\right){sin}\left({nx}\right){dx}\:\:\:\left({T}=\mathrm{2}\pi\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${a}_{{n}} =\mathrm{2}\pi^{−\mathrm{1}} \:\int_{\mathrm{0}} ^{\pi} {sin}\left({px}\right){sin}\left({nx}\right){dx}−>{a}_{{n}} =\:\left(−\mathrm{1}\right)^{{n}} \:{sin}\left({p}\pi\right).\mathrm{2}{n}\:\pi^{−\mathrm{1}} \left({n}^{\mathrm{2}} \:−\:{p}^{\mathrm{2}} \right)^{−\mathrm{1}} \\ $$$$−−>{sin}\left({px}\right)=\:\mathrm{2}\:{sin}\left({p}\pi\right).\pi^{−\mathrm{1}} \:\sum_{{n}=\mathrm{1}} ^{\propto} \:{n}\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}^{\mathrm{2}} −{p}^{\mathrm{2}} \right)^{−\mathrm{1}} \:\:{sin}\left({nx}\right) \\ $$$$=\:\mathrm{2}\pi^{−\mathrm{1}} \:{sin}\left({p}\pi\right)\left(\left(\mathrm{1}^{\mathrm{2}} −{p}^{\mathrm{2}} \right)^{−\mathrm{1}} \:{sin}\:\left({x}\right)\:−\mathrm{2}\left(\mathrm{2}^{\mathrm{2}} −{p}^{\mathrm{2}} \right)^{−\mathrm{1}} {sin}\left(\mathrm{2}{x}\right)+...\right) \\ $$
Question Number 26021 Answers: 1 Comments: 1
Question Number 26020 Answers: 0 Comments: 0
$${answer}\:{to}\:\mathrm{25962}...{we}\:{S}=\sum_{{n}=\mathrm{1}} ^{\propto} \:\mathrm{1}/_{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)} \:{and}\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\mathrm{1}/_{{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)} \\ $$$${we}\:{have}\:{S}=\:{lim}_{{n}−>\propto} \:{S}_{{n}} \:{we}\:{decompose}\:{the}\:{the}\:{rational}\:{fraction} \\ $$$${F}\left({X}\right)=\:\:\:\mathrm{1}/_{{X}} \mathrm{2}_{\left({X}^{\mathrm{2}} +\mathrm{1}\right)} ....{F}\left({X}\right)=\:\:{a}/{X}\:\:+{b}/{X}^{\mathrm{2}} \:\:+\:{c}/{X}+\mathrm{1} \\ $$$${we}\:{find}\:{a}=−\mathrm{1}..{b}=\mathrm{1}..{c}=\mathrm{1}\:\:{and}\:\:{F}\left({X}\right)=\:\:−\mathrm{1}/{X}\:+\:\mathrm{1}/{X}+\mathrm{1}+\mathrm{1}/{X}^{\mathrm{2}} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\mathrm{1}/_{{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)} =\:\:\:−\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\mathrm{1}/{k}\:\:+\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\mathrm{1}/_{{k}+\mathrm{1}} \:+\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\mathrm{1}/_{{k}^{\mathrm{2}} } \\ $$$${but}\:\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\:\mathrm{1}/{k}\:\:=\:{H}_{{n}} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\mathrm{1}/_{{k}+\mathrm{1}} =\:\:\sum_{{k}=\mathrm{2}} ^{{k}={n}+\mathrm{1}} \:\mathrm{1}/{k}\:=\:{H}_{{n}+\mathrm{1}} −\mathrm{1} \\ $$$$−>\:{S}_{{n}} =\:{H}_{{n}+\mathrm{1}} −{H}_{{n}} −\mathrm{1}\:+\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\mathrm{1}/_{{k}^{\mathrm{2}} } \\ $$$${but}\:\:{H}_{{n}} \:={ln}\left({n}\right)+{s}+{o}_{\mathrm{1}} \left(\mathrm{1}/{n}\right)...{H}_{{n}+\mathrm{1}} =\:{ln}\left({n}+\mathrm{1}\right)\:+{s}\:+{o}_{\mathrm{2}} \left(\mathrm{1}/{n}\right) \\ $$$$−>\:{H}_{{n}+\mathrm{1}} \:−\:{H}_{{n}} ={ln}\left(\left({n}+\mathrm{1}\right){n}^{−\mathrm{1}} \right)\:\:+\:{o}_{\mathrm{3}} \left(\mathrm{1}/{n}\right) \\ $$$${but}\:{lim}\:_{{n}−>\propto} {o}_{\mathrm{3}} \left(\mathrm{1}/{n}\right)=\mathrm{0}\:\:{so}\:\:\:{lim}\:\:{H}_{{n}+\mathrm{1}} −\:{H}_{{n}} =\mathrm{0} \\ $$$${lim}_{} \:\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\:\mathrm{1}/_{{k}^{\mathrm{2}} } \:\:=\:\sum_{{k}=\mathrm{1}} ^{\propto} \:\mathrm{1}/_{{k}^{\mathrm{2}} } \:\:=\pi^{\mathrm{2}} /\mathrm{6}\:\:{finally}... \\ $$$$\sum_{{n}=\mathrm{1}} ^{{n}=\propto} \:\:\mathrm{1}/_{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)} \:\:=\:\pi^{\mathrm{2}} /\mathrm{6}\:−\mathrm{1}. \\ $$$$ \\ $$
Question Number 26019 Answers: 0 Comments: 0
Question Number 26008 Answers: 2 Comments: 0
Question Number 26007 Answers: 1 Comments: 0
Question Number 25998 Answers: 1 Comments: 1
Question Number 26009 Answers: 1 Comments: 0
Question Number 25985 Answers: 1 Comments: 0
$$\mathrm{In}\:\mathrm{a}\:\bigtriangleup{ABC},\:{a}\:\mathrm{cot}\:{A}+\:{b}\:\mathrm{cot}\:{B}+{c}\:\mathrm{cot}\:{C}\:= \\ $$
Question Number 26097 Answers: 0 Comments: 0
Question Number 25975 Answers: 1 Comments: 0
Question Number 25974 Answers: 0 Comments: 0
$${A}\:{cowbell}\:{coffee}\:{at}\:\mathrm{85}°{C}\:{is}\:{placed}\:{in}\:{a} \\ $$$${freezer}\:{at}\:\mathrm{0}°{C}.{The}\:{temperature}\:{of}\:{the} \\ $$$${coffee}\:{decreases}\:{exponentially};{so}\:{that} \\ $$$${after}\:\mathrm{5}\:{minutes}\:{it}\:{is}\:\mathrm{30}°{C}. \\ $$$$\left.{i}.\right){What}\:{is}\:{the}\:{temperature}\:{after}\:\mathrm{3}{minute}? \\ $$$$\left.{ii}\right){how}\:{long}\:{will}\:{it}\:{take}\:{for}\:{the}\:{temperature} \\ $$$${to}\:{drop}\:{to}\:\mathrm{5}°{C}? \\ $$
Question Number 25973 Answers: 1 Comments: 0
$$\frac{\mathrm{k}.\mathrm{2}^{\mathrm{k}} +\mathrm{2}.\mathrm{2}^{\mathrm{k}} +\mathrm{2k}+\mathrm{4}}{\mathrm{2}}=\left(\mathrm{k}+\mathrm{3}\right)\mathrm{2}^{\mathrm{k}} \\ $$
Question Number 25972 Answers: 2 Comments: 0
Pg 1823 Pg 1824 Pg 1825 Pg 1826 Pg 1827 Pg 1828 Pg 1829 Pg 1830 Pg 1831 Pg 1832
Terms of Service
Privacy Policy
Contact: info@tinkutara.com