Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1828

Question Number 20198    Answers: 1   Comments: 0

Find exact form of cos (tan^(−1) ((1/2)))

$$\mathrm{Find}\:\mathrm{exact}\:\mathrm{form}\:\mathrm{of} \\ $$$$\mathrm{cos}\:\left(\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$

Question Number 20195    Answers: 1   Comments: 0

Question Number 20194    Answers: 0   Comments: 5

A plane is drawn through the midpoint of a diagonal of a cube perpendicular to the diagonal. Determine the area of the figure resulting from the section of the cube cut by this plane if the edge of the cube is equal to a.

$${A}\:{plane}\:{is}\:{drawn}\:{through}\:{the}\: \\ $$$${midpoint}\:{of}\:{a}\:{diagonal}\:{of}\:{a}\:{cube} \\ $$$${perpendicular}\:{to}\:{the}\:{diagonal}. \\ $$$${Determine}\:{the}\:{area}\:{of}\:{the}\:{figure} \\ $$$${resulting}\:{from}\:{the}\:{section}\:{of}\:{the} \\ $$$${cube}\:{cut}\:{by}\:{this}\:{plane}\:{if}\:{the}\:{edge} \\ $$$${of}\:{the}\:{cube}\:{is}\:{equal}\:{to}\:\boldsymbol{{a}}. \\ $$

Question Number 20192    Answers: 0   Comments: 0

t_1 =3, t_n =3t_(n−1) +2 ....n>1

$$ \\ $$$${t}_{\mathrm{1}} =\mathrm{3},\:{t}_{{n}} =\mathrm{3}{t}_{{n}−\mathrm{1}} +\mathrm{2}\:\:\:\:\:....{n}>\mathrm{1} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 20202    Answers: 0   Comments: 10

Is definite integral can have negative value? Because I think ∫_a ^b f(x) dx is total area below graph f(x) from x = a until x = b, so it can′t be negative

$$\mathrm{Is}\:\mathrm{definite}\:\mathrm{integral}\:\mathrm{can}\:\mathrm{have}\:\mathrm{negative}\:\mathrm{value}? \\ $$$$\mathrm{Because}\:\mathrm{I}\:\mathrm{think}\:\int_{{a}} ^{{b}} {f}\left({x}\right)\:{dx}\:\mathrm{is}\:\mathrm{total}\:\mathrm{area}\:\mathrm{below} \\ $$$$\mathrm{graph}\:{f}\left({x}\right)\:\mathrm{from}\:{x}\:=\:{a}\:\mathrm{until}\:{x}\:=\:{b},\:\mathrm{so}\:\mathrm{it}\:\mathrm{can}'\mathrm{t} \\ $$$$\mathrm{be}\:\mathrm{negative} \\ $$

Question Number 20182    Answers: 0   Comments: 0

Question Number 20187    Answers: 0   Comments: 1

t_n =(t_(n−1) /n^2 ), t_1 =3;t_2 ,t_3 ,(n≥2)

$${t}_{{n}} =\frac{{t}_{{n}−\mathrm{1}} }{{n}^{\mathrm{2}} },\:{t}_{\mathrm{1}} =\mathrm{3};{t}_{\mathrm{2}} ,{t}_{\mathrm{3}} ,\left({n}\geqslant\mathrm{2}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 20177    Answers: 0   Comments: 0

But ans is (1/(108))

$${But}\:{ans}\:{is}\:\frac{\mathrm{1}}{\mathrm{108}} \\ $$

Question Number 20174    Answers: 2   Comments: 0

(0.1^− )^2 {1−9(0.16^− )^2 }

$$\left(\mathrm{0}.\overset{−} {\mathrm{1}}\right)^{\mathrm{2}} \left\{\mathrm{1}−\mathrm{9}\left(\mathrm{0}.\mathrm{1}\overset{−} {\mathrm{6}}\right)^{\mathrm{2}} \right\} \\ $$

Question Number 20167    Answers: 1   Comments: 0

please solve it integrate with respect to x ∫((5x−2)/(3x^2 +2x+1))

$${please}\:{solve}\:{it} \\ $$$${integrate}\:{with}\:{respect}\:{to}\:{x} \\ $$$$\int\frac{\mathrm{5}{x}−\mathrm{2}}{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}} \\ $$

Question Number 20166    Answers: 1   Comments: 0

∫cosec^2 xdx

$$\int\mathrm{cosec}\:^{\mathrm{2}} {xdx} \\ $$

Question Number 20164    Answers: 1   Comments: 0

∫(e^(tan^(−1) x) /(1+x^2 ))

$$\int\frac{{e}^{\mathrm{tan}^{−\mathrm{1}} {x}} }{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$

Question Number 20157    Answers: 1   Comments: 1

Question Number 20156    Answers: 1   Comments: 0

Solve: inverse laplace. L^(−1) ((s/(s^(2 ) + 6s + 25)))

$$\mathrm{Solve}:\:\mathrm{inverse}\:\mathrm{laplace}.\:\:\:\:\mathrm{L}^{−\mathrm{1}} \left(\frac{\mathrm{s}}{\mathrm{s}^{\mathrm{2}\:} +\:\mathrm{6s}\:+\:\mathrm{25}}\right) \\ $$

Question Number 20149    Answers: 2   Comments: 1

Question Number 20162    Answers: 1   Comments: 0

Compute the volume of a solid bounded by a surface with equation (x^2 +y^2 +z^2 )^2 =a^3 x .

$${Compute}\:{the}\:{volume}\:{of}\:{a}\:{solid} \\ $$$${bounded}\:{by}\:{a}\:{surface}\:{with}\:{equation} \\ $$$$\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{\mathrm{2}} ={a}^{\mathrm{3}} {x}\:. \\ $$

Question Number 20138    Answers: 1   Comments: 0

lim_(x→0) ((1−cos ax)/(1−cos bx))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:{ax}}{\mathrm{1}−\mathrm{cos}\:{bx}} \\ $$$$ \\ $$

Question Number 20118    Answers: 1   Comments: 0

The quadratic equations x^2 − 6x + a = 0 and x^2 − cx + 6 = 0 have one root in common. The other roots of the first and second equations are integers in the ratio 4 : 3. Then, find the common root.

$$\mathrm{The}\:\mathrm{quadratic}\:\mathrm{equations}\:{x}^{\mathrm{2}} \:−\:\mathrm{6}{x}\:+\:{a}\:=\:\mathrm{0} \\ $$$$\mathrm{and}\:{x}^{\mathrm{2}} \:−\:{cx}\:+\:\mathrm{6}\:=\:\mathrm{0}\:\mathrm{have}\:\mathrm{one}\:\mathrm{root}\:\mathrm{in} \\ $$$$\mathrm{common}.\:\mathrm{The}\:\mathrm{other}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first} \\ $$$$\mathrm{and}\:\mathrm{second}\:\mathrm{equations}\:\mathrm{are}\:\mathrm{integers}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{ratio}\:\mathrm{4}\::\:\mathrm{3}.\:\mathrm{Then},\:\mathrm{find}\:\mathrm{the}\:\mathrm{common} \\ $$$$\mathrm{root}. \\ $$

Question Number 20116    Answers: 1   Comments: 0

If a and b (≠ 0) are the roots of the equation x^2 + ax + b = 0, then find the least value of x^2 + ax + b (x ∈ R).

$$\mathrm{If}\:{a}\:\mathrm{and}\:{b}\:\left(\neq\:\mathrm{0}\right)\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:{x}^{\mathrm{2}} \:+\:{ax}\:+\:{b}\:=\:\mathrm{0},\:\mathrm{then}\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{least}\:\mathrm{value}\:\mathrm{of}\:{x}^{\mathrm{2}} \:+\:{ax}\:+\:{b}\:\left({x}\:\in\:{R}\right). \\ $$

Question Number 20115    Answers: 1   Comments: 0

The value of a for which the equation (1 − a^2 )x^2 + 2ax − 1 = 0 has roots belonging to (0, 1) is

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:{a}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\left(\mathrm{1}\:−\:{a}^{\mathrm{2}} \right){x}^{\mathrm{2}} \:+\:\mathrm{2}{ax}\:−\:\mathrm{1}\:=\:\mathrm{0}\:\mathrm{has}\:\mathrm{roots} \\ $$$$\mathrm{belonging}\:\mathrm{to}\:\left(\mathrm{0},\:\mathrm{1}\right)\:\mathrm{is} \\ $$

Question Number 20110    Answers: 0   Comments: 1

Question Number 20102    Answers: 2   Comments: 0

Solve the equation: (log _(sin x) cos x)^2 =1

$${Solve}\:{the}\:{equation}: \\ $$$$\left(\mathrm{log}\:_{\mathrm{sin}\:{x}} \mathrm{cos}\:{x}\right)^{\mathrm{2}} =\mathrm{1} \\ $$

Question Number 20091    Answers: 1   Comments: 0

Prove that Σ_(n=0) ^3 tan^2 (((2n + 1)π)/(16)) = 28.

$$\mathrm{Prove}\:\mathrm{that}\:\underset{{n}=\mathrm{0}} {\overset{\mathrm{3}} {\sum}}\mathrm{tan}^{\mathrm{2}} \:\frac{\left(\mathrm{2}{n}\:+\:\mathrm{1}\right)\pi}{\mathrm{16}}\:=\:\mathrm{28}. \\ $$

Question Number 20079    Answers: 0   Comments: 2

Question Number 20068    Answers: 1   Comments: 1

Question Number 20058    Answers: 1   Comments: 0

What is the difference between ∮ and ∫? Where is ∮ used?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{difference}\:\mathrm{between}\:\oint\:\mathrm{and} \\ $$$$\int?\:\mathrm{Where}\:\mathrm{is}\:\oint\:\mathrm{used}? \\ $$

  Pg 1823      Pg 1824      Pg 1825      Pg 1826      Pg 1827      Pg 1828      Pg 1829      Pg 1830      Pg 1831      Pg 1832   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com