Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1828
Question Number 17142 Answers: 0 Comments: 2
$$\mathrm{Find}\:\mathrm{two}\:\mathrm{primes}\:{a}\:\mathrm{and}\:{b}\:\mathrm{such} \\ $$$$\mathrm{that}\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:{a}−{b}=\mathrm{995} \\ $$
Question Number 17119 Answers: 0 Comments: 2
Question Number 17117 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{clock}\:\mathrm{has}\:\mathrm{a}\:\mathrm{pendulum}\:\mathrm{made}\:\mathrm{of}\:\mathrm{iron}\:\mathrm{rod}\:\mathrm{of}\:\mathrm{length}\:\mathrm{2}.\mathrm{5m}, \\ $$$$\mathrm{if}\:\mathrm{the}\:\mathrm{clock}\:\mathrm{keeps}\:\mathrm{accurate}\:\mathrm{time}\:\mathrm{at}\:\mathrm{0}°\mathrm{C}.\:\mathrm{By}\:\mathrm{how}\:\mathrm{much}\:\mathrm{time}\:\mathrm{will}\:\mathrm{it}\:\mathrm{be}\:\mathrm{late} \\ $$$$\mathrm{running}\:\mathrm{at}\:\mathrm{a}\:\mathrm{temperature}\:\mathrm{30}°\mathrm{C}\:\mathrm{for}\:\mathrm{1}\:\mathrm{day}.\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{linear}\:\mathrm{expansivity}\:\mathrm{of} \\ $$$$\mathrm{iron}\:\mathrm{is}\:\:\mathrm{1}.\mathrm{2}\:×\:\mathrm{10}^{−\mathrm{5}} \mathrm{per}\:\mathrm{k}. \\ $$
Question Number 17148 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{cos}\:\left(\pi\sqrt{{x}\:−\:\mathrm{4}}\right)\:\mathrm{cos}\:\left(\pi\sqrt{{x}}\right)\:=\:\mathrm{1}\:\mathrm{is} \\ $$
Question Number 17102 Answers: 0 Comments: 3
$$\mathrm{compute}:\:\:\:\underset{\mathrm{k}\:=\:\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{2k}\:+\:\mathrm{1}}{\mathrm{2}^{\mathrm{2}\left(\mathrm{k}\:+\:\mathrm{1}\right)} } \\ $$
Question Number 17100 Answers: 1 Comments: 0
$$\mathrm{sec}\:{x}\mathrm{cos}\:\mathrm{5}{x}+\mathrm{1}=\mathrm{0} \\ $$$${find}\:{number}\:{of}\:{solution} \\ $$
Question Number 17086 Answers: 1 Comments: 6
$$\underset{−\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:{dx} \\ $$
Question Number 17080 Answers: 2 Comments: 0
$$\mathrm{sin}^{\mathrm{4}} \theta/\mathrm{2}+\mathrm{cos}\:^{\mathrm{4}} \theta/\mathrm{2}\geqslant\mathrm{1}/\mathrm{2} \\ $$
Question Number 17093 Answers: 0 Comments: 16
$$\mathrm{If}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{function} \\ $$$$\mathrm{satisfying}\:{f}\left({x}\right).{f}\left(\frac{\mathrm{1}}{{x}}\right)\:=\:{f}\left({x}\right)\:+\:{f}\left(\frac{\mathrm{1}}{{x}}\right)\:; \\ $$$${x}\:\in\:{R}\:−\:\left\{\mathrm{0}\right\}\:\mathrm{and}\:{f}\left(\mathrm{3}\right)\:=\:\mathrm{28},\:\mathrm{then}\:{f}\left(\mathrm{4}\right)\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to} \\ $$
Question Number 17075 Answers: 2 Comments: 1
$$\mathrm{Given}\:\mathrm{that}:\:\:\mathrm{log}\left(\frac{\mathrm{x}}{\mathrm{y}\:−\:\mathrm{z}}\right)\:=\:\mathrm{log}\left(\frac{\mathrm{y}}{\mathrm{z}\:−\:\mathrm{x}}\right)\:=\:\mathrm{log}\left(\frac{\mathrm{z}}{\mathrm{x}\:−\:\mathrm{y}}\right) \\ $$$$\mathrm{Show}\:\mathrm{that}\::\:\:\:\mathrm{x}^{\mathrm{x}} \:×\:\mathrm{y}^{\mathrm{y}} \:×\:\mathrm{z}^{\mathrm{z}} \:=\:\mathrm{1} \\ $$
Question Number 17073 Answers: 0 Comments: 4
Question Number 17065 Answers: 0 Comments: 4
$$\mathrm{if}\:\mathrm{y}=\mathrm{x}^{\mathrm{x}} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{this}\:\mathrm{function}? \\ $$
Question Number 17095 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{tan}\:{x}\:+\:\mathrm{sec}\:{x}\:=\:\mathrm{2}\:\mathrm{which}\:\mathrm{lie}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{interval}\:\left[\mathrm{0},\:\mathrm{2}\pi\right]\:\mathrm{is} \\ $$
Question Number 17068 Answers: 2 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$ \\ $$$$\mathrm{4tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{5}}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{239}}\right)\:=\pi/\mathrm{4} \\ $$
Question Number 17869 Answers: 1 Comments: 1
Question Number 17034 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\:\Pi} \frac{\mathrm{dx}}{\mathrm{3}+\mathrm{2sinx}+\mathrm{cosx}} \\ $$
Question Number 17033 Answers: 1 Comments: 0
$$\int_{\frac{\Pi\:}{\mathrm{2}}} ^{\:\mathrm{0}} \:\frac{\mathrm{sinx}\:\mathrm{cosx}\:\mathrm{dx}}{\mathrm{2cos}^{\mathrm{2}} \mathrm{x}+\mathrm{3sin}^{\mathrm{2}} \mathrm{x}} \\ $$
Question Number 17030 Answers: 0 Comments: 1
$$\int\:\mathrm{cot}^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{3}} \right)\:\mathrm{dx} \\ $$
Question Number 17027 Answers: 0 Comments: 0
Question Number 17019 Answers: 1 Comments: 0
$$\underset{\mathrm{r}\:=\:\mathrm{1}} {\overset{\mathrm{3}} {\sum}}\:\mathrm{2r}\:−\:\mathrm{1}\:\:=\:\:? \\ $$
Question Number 17018 Answers: 0 Comments: 8
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{cube}\:\mathrm{root}\:\mathrm{of}:\:\:\:\mathrm{55}\:+\:\mathrm{63}\:\sqrt{\mathrm{2}} \\ $$
Question Number 17017 Answers: 1 Comments: 0
$${solve}\:{the}\:{simultaenous}\:{equation} \\ $$$$\:{x}+{y}=\mathrm{3} \\ $$$$\:\frac{\mathrm{2}^{{x}} }{{x}}=\frac{\mathrm{2}^{{y}} }{{y}} \\ $$$$\:{find}\:{xand}\:{y}.{show}\:{ur}\:{workings}.... \\ $$
Question Number 17011 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\:\mathrm{a}} \mathrm{x}\sqrt{\frac{\mathrm{a}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} }}\mathrm{dx} \\ $$
Question Number 17010 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{x}\left(\mathrm{tan}^{−\mathrm{1}} \mathrm{x}\right)^{\mathrm{2}} \mathrm{dx} \\ $$
Question Number 17009 Answers: 0 Comments: 1
$$\int_{\mathrm{0}} ^{\:\mathrm{a}} \:\:\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 17008 Answers: 1 Comments: 0
$$\int_{\frac{\mathrm{1}\:}{\Pi}} ^{\frac{\mathrm{2}}{\Pi}} \:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\mathrm{sin}\frac{\mathrm{1}}{\mathrm{x}}\mathrm{dx} \\ $$
Pg 1823 Pg 1824 Pg 1825 Pg 1826 Pg 1827 Pg 1828 Pg 1829 Pg 1830 Pg 1831 Pg 1832
Terms of Service
Privacy Policy
Contact: info@tinkutara.com