Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1827
Question Number 27526 Answers: 1 Comments: 0
$$\left(\mathrm{256}\right)^{\mathrm{0}.\mathrm{16}} ×\left(\mathrm{256}\right)^{\mathrm{0}.\mathrm{09}} =? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 27189 Answers: 1 Comments: 0
$${let}\:{give}\:{S}_{{n}\:} =\:\sum_{{p}=\mathrm{1}} ^{{p}={n}} \:{arctan}\:\left(\frac{\mathrm{1}}{\mathrm{2}{p}^{\mathrm{2}} }\:\right)\:\:{find}\:{lim}_{{n}−>\propto} \:{S}_{{n}} \:\:. \\ $$
Question Number 27187 Answers: 0 Comments: 1
$${find}\:{I}=\:\:\int_{\mathrm{0}} ^{\propto} \:\frac{{cosx}}{{cosh}\left({x}\right)}{dx} \\ $$
Question Number 27186 Answers: 1 Comments: 1
$${find}\:{I}=\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{{cosx}\:+\mathrm{2}{sinx}}\:. \\ $$
Question Number 27185 Answers: 0 Comments: 0
$${find}\:\:\int\int_{{D}} \left({x}+{y}\right)^{\mathrm{2}} \:{e}^{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } {dxdy}\:{with} \\ $$$${D}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}\:} /\mathrm{0}<{x}<\mathrm{1}\:{and}\:\mathrm{0}<{y}<\mathrm{1}−{x}\:\right\}. \\ $$
Question Number 27184 Answers: 0 Comments: 1
$${calculate}\:{in}\:{terms}\:{of}\:{x}\:\:\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}\:}} \frac{{dt}}{\mathrm{1}+{xsint}}\:. \\ $$
Question Number 27183 Answers: 1 Comments: 0
$${find}\:{the}\:{value}\:{of}\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}−\mathrm{1}}{{lnt}}{dt}\:. \\ $$
Question Number 27182 Answers: 0 Comments: 1
$$\:{find}\:{the}\:{value}\:{of}\:{I}_{{a}} =\:\int\int_{{D}_{{a}} } {e}^{−\frac{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }{\mathrm{2}}} {dxdy}\:\:{with} \\ $$$${D}_{{a}} \:=\left\{\left({x},{y}\right)\in\mathbb{R}^{\mathrm{2}} \:/\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant\:{a}^{\mathrm{2}} \:\:\right\} \\ $$
Question Number 27168 Answers: 0 Comments: 4
Question Number 27159 Answers: 0 Comments: 0
$$\sqrt{\mathrm{1}−{x}^{\mathrm{6}\:} \:}\:+\sqrt{\mathrm{1}−{y}^{\mathrm{6}} }\:={k}^{\mathrm{3}} \left({x}^{\mathrm{3}} −{y}^{\mathrm{3}} \right)\:\:\:{then}\:{prove}\:{that}\:\:\:\frac{{dy}}{{dx}}=\frac{{x}^{\mathrm{2}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{y}^{\mathrm{2}} \sqrt{\mathrm{1}−{y}^{\mathrm{2}\Delta} }} \\ $$$$ \\ $$$$ \\ $$
Question Number 27144 Answers: 1 Comments: 1
$${Let}\:{A}=\left\{{x},{y},{z}\right\}\:{and}\:{B}=\left\{\mathrm{1},\mathrm{2}\right\}.\:{Find} \\ $$$${the}\:{number}\:{of}\:{relations}\:{from}\:{A}\:{to} \\ $$$${B}. \\ $$
Question Number 27128 Answers: 1 Comments: 0
$${A}\:{body}\:{resting}\:{on}\:{a}\:{rough} \\ $$$${horizontal}\:{plane}\:{require}\:{a}\:{pull}\:{of} \\ $$$$\mathrm{18}{N}\:{inclined}\:{at}\:\mathrm{30}°\:{to}\:{the}\:{plane} \\ $$$${first}\:{to}\:{move}\:{it}.{It}\:{was}\:{found} \\ $$$${that}\:{a}\:{push}\:{of}\:\mathrm{22}{N}\:{inclined}\:{at}\:\mathrm{30}° \\ $$$${to}\:{the}\:{plane}\:{just}\:{moved}\:{the}\:{body}. \\ $$$${Determine}\:{the}\:{weight}\:{and}\: \\ $$$${coefficient}\:{of}\:{friction}. \\ $$
Question Number 27117 Answers: 1 Comments: 0
Question Number 27112 Answers: 0 Comments: 2
Question Number 27104 Answers: 0 Comments: 1
$$\mathrm{sin45}^{{o}\:} \mathrm{cos45}^{{o}} +\sqrt{\mathrm{3}\:\:\:\mathrm{sin}\:\mathrm{60}°=?} \\ $$
Question Number 27103 Answers: 0 Comments: 1
$$\mathrm{the}\:\mathrm{intrest}\:\mathrm{on}\:\mathrm{a}\:\mathrm{certain}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{money}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{end}\:\mathrm{of}\:\mathrm{6}.\mathrm{25}\:\mathrm{year}\:\mathrm{was}\:\frac{\mathrm{5}}{\mathrm{16}}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{itself}.\mathrm{what} \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{rate}\:\mathrm{percent}? \\ $$
Question Number 27102 Answers: 1 Comments: 0
Question Number 27101 Answers: 1 Comments: 0
Question Number 27111 Answers: 1 Comments: 0
Question Number 27098 Answers: 0 Comments: 2
$${let}\:{give}\:{S}\left({x}\right)\:=\:\sum_{{n}=\mathrm{1}} ^{\propto} \frac{{x}^{{n}} }{{n}}\:\:{and}\:\:{W}\left({x}\right)=\:\:\sum_{{n}=\mathrm{1}} ^{\propto} \frac{\left(−\mathrm{1}\right)^{{n}} {x}^{{n}} }{{n}^{\mathrm{2}} } \\ $$$${calculate}\:\:\:{S}\left({x}\right).{W}\left({x}\right).\:\:\:{in}\:{that}\:{we}\:{know}\:/{x}/<\mathrm{1}. \\ $$
Question Number 27097 Answers: 1 Comments: 2
$${let}\:{give}\:\:\:{H}_{{n}} \:=\:\sum_{{k}=\mathrm{1}} ^{{n}\:\:} \:\frac{\mathrm{1}}{{k}}\:\:\:\:{for}\:{p}\:\:{fixed}\:{from}\:\mathbb{N}\: \\ $$$${find}\:\:{lim}_{{n}−>\propto} \:\:{H}_{{n}+{p}} \:\:\:−\:\:{H}_{{n}} \:\:. \\ $$
Question Number 27094 Answers: 1 Comments: 2
$${if}\:\mathrm{1}+{x}+{x}^{\mathrm{2}} =\mathrm{0}\:{find}\:{the}\:{value}\:{of}\: \\ $$$${A}=\:\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{6}} \:+\left(\:{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{6}} \:\:+...\:\left(\:\:{x}^{\mathrm{100}} +\frac{\mathrm{1}}{{x}^{\mathrm{100}} }\right)^{\mathrm{6}} \:. \\ $$
Question Number 27083 Answers: 1 Comments: 0
$$\int\mathrm{3}{x}^{\mathrm{2}} /{x}^{\mathrm{6}} +\mathrm{1} \\ $$$$ \\ $$
Question Number 27081 Answers: 1 Comments: 0
$${let}\:{give}\:{f}\left({x}\right)=\:\:\frac{{x}}{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{1}}\:\:{find}\:{f}^{\left({n}\right)} \left({x}\right)\:\:. \\ $$
Question Number 27076 Answers: 0 Comments: 1
Question Number 27073 Answers: 1 Comments: 0
$$\int\mathrm{ln}\:{x}×\mathrm{cos}\:\mathrm{2ln}\:{xdx} \\ $$
Pg 1822 Pg 1823 Pg 1824 Pg 1825 Pg 1826 Pg 1827 Pg 1828 Pg 1829 Pg 1830 Pg 1831
Terms of Service
Privacy Policy
Contact: info@tinkutara.com