Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1824
Question Number 27618 Answers: 1 Comments: 0
$${Find}\:{the}\:{range}\:{of}\:{y}={x}\left({x}^{\mathrm{6}} −\mathrm{1}\right).{For} \\ $$$${which}\:{y}=\mathrm{0} \\ $$
Question Number 27616 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{x}\right){dx}\:\:. \\ $$
Question Number 27615 Answers: 0 Comments: 2
$$\int{x}^{\mathrm{5}/\mathrm{2}} \left(\mathrm{1}−{x}\right)^{\mathrm{3}/\mathrm{2}} {dx} \\ $$
Question Number 27614 Answers: 0 Comments: 2
$$\int\frac{{cosx}}{\mathrm{2}−{cosx}}{dx} \\ $$
Question Number 27613 Answers: 1 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left[{x}\right]\:−{x}} {dx}\:\:. \\ $$
Question Number 27612 Answers: 1 Comments: 0
$$\int\frac{\mathrm{1}}{\mathrm{3}+{cos}^{\mathrm{2}} {x}}{dx} \\ $$
Question Number 27611 Answers: 1 Comments: 0
$$\int\frac{\mathrm{1}}{\mathrm{2sin}\:^{\mathrm{2}} {x}\:+\:\mathrm{4cos}\:^{\mathrm{2}} {x}}{dx} \\ $$
Question Number 27609 Answers: 0 Comments: 0
$$\Delta=\sqrt{{m}×\phi} \\ $$$$\Delta={mass}\:{gap} \\ $$$${m}={mass} \\ $$$$\phi={phi} \\ $$$${calculate}\:{phi}\:{to}\:{the}\:{same}\:{number}\:{of}\: \\ $$$${decimal}\:{places}\:{as}\:{the}\:{mass}. \\ $$$${use}\:{the}\:{mass}\:{of}\:{an}\:{electron} \\ $$
Question Number 27608 Answers: 0 Comments: 5
$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{ln}\left(\mathrm{x}\:+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right) \\ $$$$\mathrm{plzz}\:\mathrm{help} \\ $$
Question Number 27607 Answers: 0 Comments: 0
Question Number 27606 Answers: 0 Comments: 0
Question Number 27605 Answers: 1 Comments: 0
Question Number 27604 Answers: 0 Comments: 1
$$\mathrm{Let}\: \\ $$$${S}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{3}} }\:+\:\frac{\mathrm{1}+\mathrm{2}}{\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} }\:+...+\frac{\mathrm{1}+\mathrm{2}+...+{n}}{\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +...+{n}^{\mathrm{3}} };\:{n}=\mathrm{1},\mathrm{2},\mathrm{3},.. \\ $$$$\mathrm{Then}\:{S}_{{n}} \:\mathrm{is}\:\mathrm{greater}\:\mathrm{than} \\ $$
Question Number 27601 Answers: 0 Comments: 0
$$\left.{f}\left.\:{fonction}\:{numerical}\:{increasing}\:{on}\:\right]\mathrm{0},\mathrm{1}\right]\:{and} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({t}\right){dt}\:{converges}\:{prove}\:{that}\:\:{lim}_{{n}−>\propto} \:\:\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{f}\left(\frac{{k}}{{n}}\right) \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({t}\right){dt}\:\:. \\ $$
Question Number 27600 Answers: 0 Comments: 1
$${find}\:\:\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{t}}{\mathrm{2}+{sint}}\:{dt} \\ $$
Question Number 27599 Answers: 0 Comments: 0
$${let}\:{give}\:{the}\:{equation}\:\:{x}^{\mathrm{6}} −{x}−\mathrm{1}=\mathrm{0}\:\:{by}\:{using}\:{Newton}\:{methodfind} \\ $$$${the}\:{approximate}\:{value}\:{of}\:{the}\:{real}?{root}\:\:{for}\:{this}\:{equation}. \\ $$
Question Number 27598 Answers: 0 Comments: 1
$${find}\:\int\int\int_{{D}} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dxdxy}\:\:\:{with} \\ $$$$\left.{D}=\left\{{x},{y},{z}\right)\in{R}^{\mathrm{3}} \:\:\:/{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:\leqslant\mathrm{1}\:\:{and}\:{z}\geqslant\mathrm{0}\:\right\} \\ $$
Question Number 27597 Answers: 0 Comments: 0
$${find}\:\int\:\:\frac{\sqrt{{cos}\left(\mathrm{2}{x}\right)}}{{cosx}}\:{dx}. \\ $$
Question Number 27596 Answers: 0 Comments: 1
$${find}\:\:\int\:\:\:^{\mathrm{3}} \sqrt{\:{x}^{\mathrm{2}} −{x}^{\mathrm{3}} }\:\:{dx} \\ $$
Question Number 27595 Answers: 0 Comments: 1
$${find}\:\:\int\int_{{D}} \:\:{xy}\sqrt{\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\:{dxdy}\:\:\:{with} \\ $$$${D}=\left\{\:\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:{x}^{\mathrm{2}} \:+\mathrm{2}{y}^{\mathrm{2}} \:\leqslant\mathrm{1}\:\:,{x}\geqslant\mathrm{0}\:,{y}\:\geqslant\mathrm{0}\right\} \\ $$
Question Number 27603 Answers: 0 Comments: 1
$${Find}\:\:{the}\:{value}\:{of}\:\:\:{i}^{{i}} \:\:? \\ $$$$ \\ $$$$ \\ $$
Question Number 27587 Answers: 1 Comments: 1
$$\mathrm{divide}\:\mathrm{12x}\left(\mathrm{8x}−\mathrm{20}\right)\:\mathrm{by}\:\mathrm{4}\left(\mathrm{2x}−\mathrm{5}\right) \\ $$
Question Number 27581 Answers: 1 Comments: 0
$$\mathrm{If}\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\int\left(\mathrm{4}\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)\boldsymbol{\mathrm{dx}} \\ $$$$\mathrm{f}\left(\mathrm{3}\right)=\mathrm{22},\:\mathrm{find}\:{f}\left(\mathrm{x}\right) \\ $$
Question Number 27580 Answers: 1 Comments: 0
$$\mathrm{Simplify}\:\frac{\mathrm{1}}{\mathrm{1}−\mathrm{cos}\:\mathrm{a}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{cos}\:\mathrm{a}} \\ $$$$\mathrm{and}\:\mathrm{leave}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{in}\:\mathrm{the}\: \\ $$$$\mathrm{form}\Rightarrow\:\:\:\mathrm{sin}\:\mathrm{a} \\ $$
Question Number 27579 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{circle}\:\mathrm{with}\:\mathrm{center}\:\left(−\mathrm{3},\mathrm{1}\right) \\ $$$$\mathrm{passes}\:\mathrm{through}\:\mathrm{the}\:\mathrm{point}\: \\ $$$$\left(\mathrm{3},\mathrm{1}\right).\:\mathrm{Find}\:\mathrm{it}'\mathrm{s}\:\mathrm{equation} \\ $$
Question Number 27578 Answers: 0 Comments: 1
$$\mathrm{if}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{2x}−\mathrm{3}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{x}+\mathrm{2}\right)} \\ $$$$\mathrm{1}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{for}\:\mathrm{which}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{undefied}. \\ $$$$\mathrm{2}.\mathrm{Express}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{in}\:\mathrm{partial}\:\mathrm{fraction} \\ $$
Pg 1819 Pg 1820 Pg 1821 Pg 1822 Pg 1823 Pg 1824 Pg 1825 Pg 1826 Pg 1827 Pg 1828
Terms of Service
Privacy Policy
Contact: info@tinkutara.com