Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1823
Question Number 27073 Answers: 1 Comments: 0
$$\int\mathrm{ln}\:{x}×\mathrm{cos}\:\mathrm{2ln}\:{xdx} \\ $$
Question Number 27075 Answers: 0 Comments: 0
$$\mathrm{Laws}\:\mathrm{of}\:\mathrm{Motion}\:\mathrm{question}\:\mathrm{at} \\ $$$$\mathrm{ibb}.\mathrm{co}/\mathrm{cqq1NG} \\ $$$$\mathrm{I}\:\mathrm{tried}\:\mathrm{uploading}\:\mathrm{here}\:\mathrm{but}\:\mathrm{it}\:\mathrm{doesn}'\mathrm{t} \\ $$$$\mathrm{get}\:\mathrm{uploaded}. \\ $$
Question Number 27074 Answers: 2 Comments: 0
Question Number 27065 Answers: 0 Comments: 0
Question Number 27057 Answers: 1 Comments: 3
$$\mathrm{Try}\:\mathrm{to}\:\mathrm{write}\:\mathrm{new}\:\mathrm{year}\:\mathrm{number} \\ $$$$\left(\mathrm{2018}\right)\mathrm{as}: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{primes} \\ $$$$\left(\mathrm{ii}\right)\mathrm{Sum}\:\mathrm{of}\:\mathrm{three}\:\mathrm{primes} \\ $$$$\left(\mathrm{iii}\right)\mathrm{Sum}\:\mathrm{of}\:\mathrm{primes} \\ $$$$\left(\mathrm{iv}\right)\mathrm{Sum}\:\mathrm{of}\:\mathrm{as}\:\mathrm{many}\:\mathrm{distinct}\:\mathrm{primes}\:\mathrm{as} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{possible}. \\ $$
Question Number 27055 Answers: 1 Comments: 1
Question Number 27050 Answers: 0 Comments: 2
Question Number 27059 Answers: 0 Comments: 2
Question Number 27046 Answers: 0 Comments: 0
$${Considering}\:\boldsymbol{{y}}=\boldsymbol{{x}}^{\mathrm{3}} +\boldsymbol{{px}}+\boldsymbol{{q}} \\ $$$${If}\:\:\:\:\:\frac{{dy}}{{dx}}\mid_{{x}=\alpha} =\mathrm{0}\:\:\Rightarrow\:\:\alpha^{\mathrm{2}} =−\frac{{p}}{\mathrm{3}} \\ $$$${if}\:\:\:\frac{{d}\left({y}/{x}\right)}{{dx}}\mid_{{x}=\beta} =\mathrm{0}\:\:\:\Rightarrow\:\beta^{\:\mathrm{3}} =\frac{{q}}{\mathrm{2}} \\ $$$${roots}\:{of}\:{the}\:{cubic}\:\:{eq}^{{n}} \:{are}: \\ $$$$\:\:\:\:{x}=\left[−\beta^{\:\mathrm{3}} \pm\sqrt{\beta^{\:\mathrm{6}} −\alpha^{\mathrm{6}} }\:\right]^{\mathrm{1}/\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\left[\beta^{\:\mathrm{3}} \pm\sqrt{\beta^{\:\mathrm{6}} −\alpha^{\mathrm{6}} }\:\right]^{\mathrm{1}/\mathrm{3}} \:. \\ $$$$\:{Why}\:{such}\:{a}\:{connection}? \\ $$$${If}\:{equation}\:{is}\:{quadratic}\:{even\_} \\ $$$$\:\:\:\:\boldsymbol{{y}}=\boldsymbol{{ax}}^{\mathrm{2}} +\boldsymbol{{bx}}+\boldsymbol{{c}} \\ $$$$\frac{{dy}}{{dx}}\mid_{{x}=\alpha} =\mathrm{0}\:\:\:\Rightarrow\:\:\alpha=−\frac{{b}}{\mathrm{2}{a}} \\ $$$$\:\:\:\:\:\:\frac{{d}\left({y}/{x}\right)}{{dx}}\mid_{{x}=\beta} =\mathrm{0}\:\:\Rightarrow\:\beta^{\:\mathrm{2}} =\frac{{c}}{{a}} \\ $$$${roots}\:{of}\:{quadratic}\:{eq}.\:{are}: \\ $$$$\:\:\:\:{x}=\boldsymbol{\alpha}\pm\sqrt{\boldsymbol{\alpha}^{\mathrm{2}} −\boldsymbol{\beta}^{\:\mathrm{2}} }\: \\ $$$${why}\:{such}\:{a}\:{connection}\:?\: \\ $$
Question Number 27044 Answers: 1 Comments: 0
Question Number 27061 Answers: 2 Comments: 1
Question Number 27060 Answers: 1 Comments: 1
Question Number 27045 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\int_{\frac{\mathrm{2}}{\pi}} ^{\frac{\mathrm{6}}{\pi}} \:{x}^{\mathrm{3}} \:{cos}\left(\left[\frac{\mathrm{1}}{{x}}\right]\right){dx} \\ $$
Question Number 27033 Answers: 1 Comments: 0
Question Number 27032 Answers: 0 Comments: 1
$${xy}=\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\frac{{dy}}{{dx}}\:\:\:\:{x}=\mathrm{0}\:{y}=\mathrm{1} \\ $$
Question Number 27031 Answers: 1 Comments: 0
Question Number 27028 Answers: 1 Comments: 0
$${y}^{\left(\mathrm{2}\right)} +\mathrm{4}{y}=\mathrm{sinh}\:{x}×\mathrm{sin}\:\mathrm{2}{x} \\ $$
Question Number 27016 Answers: 0 Comments: 1
$${the}\:{intrest}\:{on}\:{surtain}\:{sum}\:{of}\:{money}\:{at}\:{the}\: \\ $$$${end}\:{of}\:\mathrm{6}.\mathrm{25}\:{year}\:{was}\:\frac{\mathrm{5}}{\mathrm{16}}\:{of}\:{the}\:{itself}.{what}\:{is}\:{the} \\ $$$${the}\:{rate}\:{percent}? \\ $$
Question Number 27015 Answers: 0 Comments: 1
$${find}\:{the}\:{simple}\:{intrest}\:{on}\:{rs}\:\mathrm{840}\:{for}\:\mathrm{3}\:{year}\:{at}\: \\ $$$${at}\:\mathrm{5\%}\:{per}\:{annum}? \\ $$
Question Number 27003 Answers: 0 Comments: 2
$$\underset{\mathrm{1}/\mathrm{8}} {\overset{\mathrm{1}/\mathrm{2}} {\int}}\:\lfloor\mathrm{ln}\:\lceil\frac{\mathrm{1}}{{x}}\rceil\rfloor\:{dx} \\ $$
Question Number 26999 Answers: 1 Comments: 0
$${calculate}\:\prod_{{k}=\mathrm{1}} ^{{n}} {cos}\left(\frac{{a}}{\mathrm{2}^{{k}} }\right)\:\:{and}\mathrm{0}<{a}<\pi\:\:{then}\:{find}\:{the}\:{value}\:{of} \\ $$$${lim}_{{n}−>\propto} \:\sum_{{k}=\mathrm{1}} ^{{n}} {ln}\left({cos}\left(\frac{{a}}{\mathrm{2}^{{k}} }\right)\right). \\ $$
Question Number 26998 Answers: 0 Comments: 0
$${smlify}\:{X}=\:\:\prod_{{p}=\mathrm{2}} ^{{n}} \frac{{p}^{\mathrm{3}} −\mathrm{1}}{{p}^{\mathrm{3}} \:+\mathrm{1}}\:{by}\:{using}\:\mathrm{1},{j},{j}^{\mathrm{2}} {and}\:{j}={e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} . \\ $$
Question Number 26997 Answers: 0 Comments: 3
$${let}\:{give}\:\xi\:\in\mathbb{C}\:{and}\:\xi^{{n}} =\mathrm{1}\:\left(\xi\:{is}\:{the}\:{n}^{{me}} \:{root}\:{of}\:\mathrm{1}\right) \\ $$$${simplify}\:\:{A}=\:\mathrm{1}+\xi^{{p}} +\xi^{\mathrm{2}{p}} +...\:+\xi^{\left({n}−\mathrm{1}\right){p}} \\ $$$${and}\:{B}=\:\mathrm{1}+\mathrm{2}\xi\:+\mathrm{3}\xi^{\mathrm{2}} +...+{n}\xi^{{n}−\mathrm{1}} . \\ $$
Question Number 27153 Answers: 0 Comments: 2
$${find}\:{the}\:{value}\:{of}\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{sin}\left(\frac{{k}\pi}{\mathrm{2}{n}}\:\right)\:. \\ $$
Question Number 26993 Answers: 0 Comments: 5
Question Number 26983 Answers: 1 Comments: 0
$$\mathrm{Find}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:\:\:\: \\ $$$$\:\:\:\:\mathrm{x}^{\mathrm{y}} =\mathrm{y}^{\mathrm{x}} \\ $$
Pg 1818 Pg 1819 Pg 1820 Pg 1821 Pg 1822 Pg 1823 Pg 1824 Pg 1825 Pg 1826 Pg 1827
Terms of Service
Privacy Policy
Contact: info@tinkutara.com