Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1822

Question Number 28159    Answers: 0   Comments: 1

let give D=[0,(π/2)]×[0,(1/2)] find the value of ∫∫_D ((dxdy)/(ycosx +1)) .

$${let}\:{give}\:{D}=\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]×\left[\mathrm{0},\frac{\mathrm{1}}{\mathrm{2}}\right]\:\:{find}\:{the}\:{value}\:{of} \\ $$$$\int\int_{{D}} \:\:\:\frac{{dxdy}}{{ycosx}\:+\mathrm{1}}\:\:. \\ $$

Question Number 28158    Answers: 1   Comments: 0

calculate ∫∫_(x^2 +y^2 ≤1) ((dxdy)/(3+x^2 +y^2 )) .

$${calculate}\:\int\int_{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant\mathrm{1}} \:\:\:\frac{{dxdy}}{\mathrm{3}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\:. \\ $$

Question Number 28185    Answers: 1   Comments: 0

M, N are endpoints of a diameter 4x−y=15 of circle x^2 +y^2 −6x+6y−16=0 ; and are also on the tangents at the end points of the major axis of an ellipse respectively, such that MN is also tangent to the same ellipse at point P. If the major axis of the ellipse is along y=x, find eccentricity, length of latus rectum, centre and equation of derectrices.

$${M},\:{N}\:{are}\:{endpoints}\:{of}\:{a}\:{diameter} \\ $$$$\:\mathrm{4}{x}−{y}=\mathrm{15}\:\:{of}\:{circle} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{6}{y}−\mathrm{16}=\mathrm{0}\:;\:{and}\:{are} \\ $$$${also}\:{on}\:{the}\:{tangents}\:{at}\:{the}\:{end} \\ $$$${points}\:{of}\:{the}\:{major}\:{axis}\:{of}\:{an} \\ $$$${ellipse}\:{respectively},\:{such}\:{that} \\ $$$${MN}\:{is}\:{also}\:{tangent}\:{to}\:{the}\:{same} \\ $$$${ellipse}\:{at}\:{point}\:{P}. \\ $$$${If}\:{the}\:{major}\:{axis}\:{of}\:{the}\:{ellipse} \\ $$$${is}\:{along}\:{y}={x},\:{find} \\ $$$$\:\:\:{eccentricity},\:{length}\:{of}\:{latus} \\ $$$${rectum},\:{centre}\:{and}\:{equation}\:{of} \\ $$$${derectrices}. \\ $$

Question Number 28151    Answers: 0   Comments: 4

lim_(x→1) ((1/(log_e x)) − (x/(x − 1)))

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\:\left(\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{e}} \mathrm{x}}\:−\:\frac{\mathrm{x}}{\mathrm{x}\:−\:\mathrm{1}}\right) \\ $$

Question Number 28139    Answers: 1   Comments: 0

Question Number 28138    Answers: 0   Comments: 1

studie and?give the graph for the function f(x)= e^x −x^e .

$${studie}\:{and}?{give}\:{the}\:{graph}\:{for}\:{the}\:{function} \\ $$$${f}\left({x}\right)=\:{e}^{{x}} \:\:−{x}^{{e}} \:\:\:\:\:. \\ $$

Question Number 28202    Answers: 1   Comments: 1

Question Number 28201    Answers: 0   Comments: 0

prove the sine rule using dot product need help please

$$\mathrm{prove}\:\mathrm{the}\:\mathrm{sine}\:\mathrm{rule}\:\mathrm{using}\:\mathrm{dot}\:\mathrm{product} \\ $$$$\mathrm{need}\:\mathrm{help}\:\mathrm{please} \\ $$

Question Number 28143    Answers: 1   Comments: 0

x−(1/x)=3 x^2 −(1/x^2 )=?

$$\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}=\mathrm{3} \\ $$$$\mathrm{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }=? \\ $$

Question Number 28124    Answers: 0   Comments: 3

f(R^+ →R) is a differentiable function obeying 2f(x)=f(xy)+f((x/y)) for all x,y ∈ R^+ and f(1)=0, f ′(1)=1 . Find f(x). More questions may follow..

$${f}\left({R}^{+} \rightarrow{R}\right)\:{is}\:{a}\:{differentiable} \\ $$$${function}\:{obeying} \\ $$$$\mathrm{2}{f}\left({x}\right)={f}\left({xy}\right)+{f}\left(\frac{{x}}{{y}}\right) \\ $$$${for}\:{all}\:{x},{y}\:\in\:{R}^{+} \:{and}\: \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{0},\:{f}\:'\left(\mathrm{1}\right)=\mathrm{1}\:. \\ $$$${Find}\:{f}\left({x}\right).\:{More}\:{questions}\:{may} \\ $$$${follow}.. \\ $$

Question Number 28116    Answers: 0   Comments: 0

Question Number 28105    Answers: 0   Comments: 1

Question Number 28098    Answers: 1   Comments: 0

lim_(x→∞) ((log_e x)/x^h ) , h > 0

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{\mathrm{log}_{\mathrm{e}} \mathrm{x}}{\mathrm{x}^{\mathrm{h}} }\:,\:\:\:\:\:\:\:\:\:\:\:\mathrm{h}\:>\:\mathrm{0} \\ $$

Question Number 28097    Answers: 0   Comments: 3

lim_(x→∞) ((3^x − 2^x )/x^2 )

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{\mathrm{3}^{\mathrm{x}} \:−\:\mathrm{2}^{\mathrm{x}} }{\mathrm{x}^{\mathrm{2}} } \\ $$

Question Number 28096    Answers: 0   Comments: 2

lim_(x→∞) (x^2 /(x − sinx))

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{x}\:−\:\mathrm{sinx}} \\ $$

Question Number 28095    Answers: 0   Comments: 2

lim_(x→0^− ) (1 + tanx)^(−cotx)

$$\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\:\left(\mathrm{1}\:+\:\mathrm{tanx}\right)^{−\mathrm{cotx}} \\ $$

Question Number 28093    Answers: 0   Comments: 2

lim_(x→0^− ) (1 + tanx)^(cotx)

$$\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\:\left(\mathrm{1}\:+\:\mathrm{tanx}\right)^{\mathrm{cotx}} \\ $$

Question Number 28113    Answers: 1   Comments: 1

Question Number 28110    Answers: 0   Comments: 1

Question Number 28088    Answers: 0   Comments: 6

lim_(x→0^+ ) (sinx)^((tanx))

$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\:\left(\mathrm{sinx}\right)^{\left(\mathrm{tanx}\right)} \\ $$

Question Number 28084    Answers: 0   Comments: 6

lim_(x→∞) (x − log_e x)

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\left(\mathrm{x}\:−\:\mathrm{log}_{\mathrm{e}} \mathrm{x}\right) \\ $$

Question Number 28076    Answers: 1   Comments: 1

Question Number 28075    Answers: 0   Comments: 0

Question Number 28073    Answers: 0   Comments: 1

find ∫_0 ^1 e^(−2x) ln(1+t e^(−x) )dx with 0<t<1 .

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{t}\:{e}^{−{x}} \right){dx}\:\:\:{with}\:\:\mathrm{0}<{t}<\mathrm{1}\:\:. \\ $$

Question Number 28072    Answers: 0   Comments: 1

let give the function f(x)=x^4 2π periodic and even developp f atfourier series.

$${let}\:{give}\:{the}\:{function}\:\:{f}\left({x}\right)={x}^{\mathrm{4}} \:\:\:\mathrm{2}\pi\:{periodic}\:{and}\:{even} \\ $$$${developp}\:\:\:{f}\:{atfourier}\:{series}. \\ $$

Question Number 28071    Answers: 0   Comments: 3

let give A_p = ∫_0 ^π t^p cos(nx) with nand p from N 1) find a relation between A_p and A_(p−2) 2) find arelation between A_(2p) and A_(2p−2) 3) find a relation?betweer A_(2p+1) and A_(2p−1) 3) cslculat A_(0 ) , A_1 , A_2 , A_2 .

$${let}\:{give}\:\:{A}_{{p}} =\:\int_{\mathrm{0}} ^{\pi} \:{t}^{{p}} \:{cos}\left({nx}\right)\:\:{with}\:{nand}\:{p}\:{from}\:{N} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{relation}\:{between}\:\:{A}_{{p}} \:{and}\:{A}_{{p}−\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{arelation}\:{between}\:\:{A}_{\mathrm{2}{p}} \:\:{and}\:{A}_{\mathrm{2}{p}−\mathrm{2}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{a}\:{relation}?{betweer}\:{A}_{\mathrm{2}{p}+\mathrm{1}} \:{and}\:\:{A}_{\mathrm{2}{p}−\mathrm{1}} \\ $$$$\left.\mathrm{3}\right)\:{cslculat}\:\:{A}_{\mathrm{0}\:} ,\:{A}_{\mathrm{1}} ,\:{A}_{\mathrm{2}} \:,\:{A}_{\mathrm{2}} . \\ $$

  Pg 1817      Pg 1818      Pg 1819      Pg 1820      Pg 1821      Pg 1822      Pg 1823      Pg 1824      Pg 1825      Pg 1826   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com