Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1818

Question Number 27627    Answers: 1   Comments: 1

Question Number 27624    Answers: 0   Comments: 3

(D^2 +2D+1)y=x^2 +2x+1

$$\left({D}^{\mathrm{2}} +\mathrm{2}{D}+\mathrm{1}\right){y}={x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1} \\ $$

Question Number 27621    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ ((arctan(x+(1/x)))/(1+x^2 ))dx .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:. \\ $$

Question Number 27620    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ (((−1)^x^2 )/(3+x^2 ))dx .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{x}^{\mathrm{2}} } }{\mathrm{3}+{x}^{\mathrm{2}} }{dx}\:. \\ $$

Question Number 27619    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ ((cos(2x))/((1+x^2 )^2 ))dx.

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\mathrm{2}{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}. \\ $$

Question Number 27618    Answers: 1   Comments: 0

Find the range of y=x(x^6 −1).For which y=0

$${Find}\:{the}\:{range}\:{of}\:{y}={x}\left({x}^{\mathrm{6}} −\mathrm{1}\right).{For} \\ $$$${which}\:{y}=\mathrm{0} \\ $$

Question Number 27616    Answers: 0   Comments: 1

find ∫_0 ^1 e^(−2x) ln(1+x)dx .

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{x}\right){dx}\:\:. \\ $$

Question Number 27615    Answers: 0   Comments: 2

∫x^(5/2) (1−x)^(3/2) dx

$$\int{x}^{\mathrm{5}/\mathrm{2}} \left(\mathrm{1}−{x}\right)^{\mathrm{3}/\mathrm{2}} {dx} \\ $$

Question Number 27614    Answers: 0   Comments: 2

∫((cosx)/(2−cosx))dx

$$\int\frac{{cosx}}{\mathrm{2}−{cosx}}{dx} \\ $$

Question Number 27613    Answers: 1   Comments: 1

find the value of ∫_0 ^∞ e^(−[x] −x) dx .

$${find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left[{x}\right]\:−{x}} {dx}\:\:. \\ $$

Question Number 27612    Answers: 1   Comments: 0

∫(1/(3+cos^2 x))dx

$$\int\frac{\mathrm{1}}{\mathrm{3}+{cos}^{\mathrm{2}} {x}}{dx} \\ $$

Question Number 27611    Answers: 1   Comments: 0

∫(1/(2sin^2 x + 4cos^2 x))dx

$$\int\frac{\mathrm{1}}{\mathrm{2sin}\:^{\mathrm{2}} {x}\:+\:\mathrm{4cos}\:^{\mathrm{2}} {x}}{dx} \\ $$

Question Number 27609    Answers: 0   Comments: 0

Δ=(√(m×φ)) Δ=mass gap m=mass φ=phi calculate phi to the same number of decimal places as the mass. use the mass of an electron

$$\Delta=\sqrt{{m}×\phi} \\ $$$$\Delta={mass}\:{gap} \\ $$$${m}={mass} \\ $$$$\phi={phi} \\ $$$${calculate}\:{phi}\:{to}\:{the}\:{same}\:{number}\:{of}\: \\ $$$${decimal}\:{places}\:{as}\:{the}\:{mass}. \\ $$$${use}\:{the}\:{mass}\:{of}\:{an}\:{electron} \\ $$

Question Number 27608    Answers: 0   Comments: 5

f(x) = ln(x +(√(x^2 +1))) find f^(−1) (x) plzz help

$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{ln}\left(\mathrm{x}\:+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right) \\ $$$$\mathrm{plzz}\:\mathrm{help} \\ $$

Question Number 27607    Answers: 0   Comments: 0

Question Number 27606    Answers: 0   Comments: 0

Question Number 27605    Answers: 1   Comments: 0

Question Number 27604    Answers: 0   Comments: 1

Let S_n =(1/1^3 ) + ((1+2)/(1^3 +2^3 )) +...+((1+2+...+n)/(1^3 +2^3 +...+n^3 )); n=1,2,3,.. Then S_n is greater than

$$\mathrm{Let}\: \\ $$$${S}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{3}} }\:+\:\frac{\mathrm{1}+\mathrm{2}}{\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} }\:+...+\frac{\mathrm{1}+\mathrm{2}+...+{n}}{\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +...+{n}^{\mathrm{3}} };\:{n}=\mathrm{1},\mathrm{2},\mathrm{3},.. \\ $$$$\mathrm{Then}\:{S}_{{n}} \:\mathrm{is}\:\mathrm{greater}\:\mathrm{than} \\ $$

Question Number 27601    Answers: 0   Comments: 0

f fonction numerical increasing on ]0,1] and ∫_0 ^1 f(t)dt converges prove that lim_(n−>∝) (1/n) Σ_(k=1) ^n f((k/n)) = ∫_0 ^1 f(t)dt .

$$\left.{f}\left.\:{fonction}\:{numerical}\:{increasing}\:{on}\:\right]\mathrm{0},\mathrm{1}\right]\:{and} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({t}\right){dt}\:{converges}\:{prove}\:{that}\:\:{lim}_{{n}−>\propto} \:\:\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{f}\left(\frac{{k}}{{n}}\right) \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({t}\right){dt}\:\:. \\ $$

Question Number 27600    Answers: 0   Comments: 1

find ∫_0 ^π (t/(2+sint)) dt

$${find}\:\:\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{t}}{\mathrm{2}+{sint}}\:{dt} \\ $$

Question Number 27599    Answers: 0   Comments: 0

let give the equation x^6 −x−1=0 by using Newton methodfind the approximate value of the real?root for this equation.

$${let}\:{give}\:{the}\:{equation}\:\:{x}^{\mathrm{6}} −{x}−\mathrm{1}=\mathrm{0}\:\:{by}\:{using}\:{Newton}\:{methodfind} \\ $$$${the}\:{approximate}\:{value}\:{of}\:{the}\:{real}?{root}\:\:{for}\:{this}\:{equation}. \\ $$

Question Number 27598    Answers: 0   Comments: 1

find ∫∫∫_D (x^2 +y^2 )dxdxy with D={x,y,z)∈R^3 /x^2 +y^2 +z^2 ≤1 and z≥0 }

$${find}\:\int\int\int_{{D}} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dxdxy}\:\:\:{with} \\ $$$$\left.{D}=\left\{{x},{y},{z}\right)\in{R}^{\mathrm{3}} \:\:\:/{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:\leqslant\mathrm{1}\:\:{and}\:{z}\geqslant\mathrm{0}\:\right\} \\ $$

Question Number 27597    Answers: 0   Comments: 0

find ∫ ((√(cos(2x)))/(cosx)) dx.

$${find}\:\int\:\:\frac{\sqrt{{cos}\left(\mathrm{2}{x}\right)}}{{cosx}}\:{dx}. \\ $$

Question Number 27596    Answers: 0   Comments: 1

find ∫ ^3 (√( x^2 −x^3 )) dx

$${find}\:\:\int\:\:\:^{\mathrm{3}} \sqrt{\:{x}^{\mathrm{2}} −{x}^{\mathrm{3}} }\:\:{dx} \\ $$

Question Number 27595    Answers: 0   Comments: 1

find ∫∫_D xy(√( x^2 +y^2 )) dxdy with D={ (x,y)∈R^2 / x^2 +2y^2 ≤1 ,x≥0 ,y ≥0}

$${find}\:\:\int\int_{{D}} \:\:{xy}\sqrt{\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\:{dxdy}\:\:\:{with} \\ $$$${D}=\left\{\:\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:{x}^{\mathrm{2}} \:+\mathrm{2}{y}^{\mathrm{2}} \:\leqslant\mathrm{1}\:\:,{x}\geqslant\mathrm{0}\:,{y}\:\geqslant\mathrm{0}\right\} \\ $$

Question Number 27603    Answers: 0   Comments: 1

Find the value of i^i ?

$${Find}\:\:{the}\:{value}\:{of}\:\:\:{i}^{{i}} \:\:? \\ $$$$ \\ $$$$ \\ $$

  Pg 1813      Pg 1814      Pg 1815      Pg 1816      Pg 1817      Pg 1818      Pg 1819      Pg 1820      Pg 1821      Pg 1822   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com