Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1818

Question Number 18377    Answers: 0   Comments: 0

Suppose one is given two vector field A and B in region of space such that, A(x,y,z) = 4xi + zj + y^2 z^2 k B(x,y,z) = yi +3j − yzk Find: C(x,y,z) if C = A ∧ B Also prove that, C(x,y,z) is perpendicular to A(x,y,z)

$$\mathrm{Suppose}\:\mathrm{one}\:\mathrm{is}\:\mathrm{given}\:\mathrm{two}\:\mathrm{vector}\:\mathrm{field}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{in}\:\mathrm{region}\:\mathrm{of}\:\mathrm{space}\:\mathrm{such}\:\mathrm{that}, \\ $$$$\mathrm{A}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)\:=\:\mathrm{4xi}\:+\:\mathrm{zj}\:+\:\mathrm{y}^{\mathrm{2}} \mathrm{z}^{\mathrm{2}} \mathrm{k} \\ $$$$\mathrm{B}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)\:=\:\mathrm{yi}\:+\mathrm{3j}\:−\:\mathrm{yzk} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{C}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)\:\mathrm{if}\:\mathrm{C}\:=\:\mathrm{A}\:\wedge\:\mathrm{B} \\ $$$$\mathrm{Also}\:\mathrm{prove}\:\mathrm{that},\:\:\mathrm{C}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)\:\mathrm{is}\:\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{A}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right) \\ $$

Question Number 18721    Answers: 1   Comments: 0

Let ABC and ABC′ be two non- congruent triangles with sides AB = 4, AC = AC′ = 2(√2) and angle B = 30°. The absolute value of the difference between the areas of these triangles is

$$\mathrm{Let}\:{ABC}\:\mathrm{and}\:{ABC}'\:\mathrm{be}\:\mathrm{two}\:\mathrm{non}- \\ $$$$\mathrm{congruent}\:\mathrm{triangles}\:\mathrm{with}\:\mathrm{sides}\:{AB}\:=\:\mathrm{4}, \\ $$$${AC}\:=\:{AC}'\:=\:\mathrm{2}\sqrt{\mathrm{2}}\:\mathrm{and}\:\mathrm{angle}\:{B}\:=\:\mathrm{30}°. \\ $$$$\mathrm{The}\:\mathrm{absolute}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{difference} \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{areas}\:\mathrm{of}\:\mathrm{these}\:\mathrm{triangles}\:\mathrm{is} \\ $$

Question Number 18357    Answers: 0   Comments: 0

From the topic transformer prove that: e = (√2) ε cos(ωt)

$$\mathrm{From}\:\mathrm{the}\:\mathrm{topic}\:\mathrm{transformer} \\ $$$$ \\ $$$$\mathrm{prove}\:\mathrm{that}:\:\:\mathrm{e}\:=\:\sqrt{\mathrm{2}}\:\varepsilon\:\mathrm{cos}\left(\omega\mathrm{t}\right) \\ $$

Question Number 18355    Answers: 0   Comments: 0

Question Number 18349    Answers: 0   Comments: 0

Consider the iteration x_(k+1) =x_k −(([f(x)]^2 )/(f(x_k +f(x_k ))−f(x_k ))), k=0,1,2,... for the solution of f(x)=0. Explain the connection with Newton′s method, and show that (x_k ) converges quadratically if x_0 is sufficiently close to the solution.

$${Consider}\:{the}\:{iteration} \\ $$$${x}_{{k}+\mathrm{1}} ={x}_{{k}} −\frac{\left[{f}\left({x}\right)\right]^{\mathrm{2}} }{{f}\left({x}_{{k}} +{f}\left({x}_{{k}} \right)\right)−{f}\left({x}_{{k}} \right)},\:\:\:\:\:{k}=\mathrm{0},\mathrm{1},\mathrm{2},... \\ $$$${for}\:{the}\:{solution}\:{of}\:{f}\left({x}\right)=\mathrm{0}.\:{Explain}\:{the} \\ $$$${connection}\:{with}\:{Newton}'{s}\:{method},\:{and}\:{show} \\ $$$${that}\:\left({x}_{{k}} \right)\:{converges}\:{quadratically}\:{if}\:{x}_{\mathrm{0}} \:{is} \\ $$$${sufficiently}\:{close}\:{to}\:{the}\:{solution}. \\ $$$$ \\ $$

Question Number 18342    Answers: 2   Comments: 0

Question Number 19199    Answers: 1   Comments: 0

y=tan x^(tan x^(tan x) )

$$\mathrm{y}=\mathrm{tan}\:\mathrm{x}^{\mathrm{tan}\:\mathrm{x}^{\mathrm{tan}\:\mathrm{x}} } \\ $$

Question Number 18369    Answers: 1   Comments: 0

Prove that a^4 + b^4 + c^4 ≥ abc(a + b + c)

$$\mathrm{Prove}\:\mathrm{that}\:{a}^{\mathrm{4}} \:+\:{b}^{\mathrm{4}} \:+\:{c}^{\mathrm{4}} \:\geqslant\:{abc}\left({a}\:+\:{b}\:+\:{c}\right) \\ $$

Question Number 18366    Answers: 1   Comments: 0

Question Number 18365    Answers: 1   Comments: 0

Question Number 18364    Answers: 0   Comments: 0

Question Number 18363    Answers: 0   Comments: 0

Question Number 18362    Answers: 0   Comments: 0

Question Number 18333    Answers: 0   Comments: 1

Question Number 18469    Answers: 1   Comments: 0

Find Z_x and Z_y for each of the functions below (a) Z = 8x^2 y + 14xy^2 + 5y^2 x^3 (b) Z = 4x^3 y^2 + 2x^2 y^3 − 7xy^5

$$\mathrm{Find}\:\mathrm{Z}_{\mathrm{x}} \:\mathrm{and}\:\mathrm{Z}_{\mathrm{y}} \:\mathrm{for}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{functions}\:\mathrm{below} \\ $$$$\left(\mathrm{a}\right)\:\:\mathrm{Z}\:=\:\mathrm{8x}^{\mathrm{2}} \mathrm{y}\:+\:\mathrm{14xy}^{\mathrm{2}} \:+\:\mathrm{5y}^{\mathrm{2}} \mathrm{x}^{\mathrm{3}} \\ $$$$\left(\mathrm{b}\right)\:\:\mathrm{Z}\:=\:\mathrm{4x}^{\mathrm{3}} \mathrm{y}^{\mathrm{2}} \:+\:\mathrm{2x}^{\mathrm{2}} \mathrm{y}^{\mathrm{3}} \:−\:\mathrm{7xy}^{\mathrm{5}} \\ $$

Question Number 18327    Answers: 1   Comments: 1

Question Number 18323    Answers: 0   Comments: 0

Σ((cos 2rθ)/(sin^2 2rθ−sin^2 θ))

$$\Sigma\frac{\mathrm{cos}\:\mathrm{2}{r}\theta}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{r}\theta−\mathrm{sin}\:^{\mathrm{2}} \theta} \\ $$

Question Number 18322    Answers: 1   Comments: 1

The pulley arrangements are identical. The mass of the rope is negligible. In (a), the mass m is lifted up by attaching a mass (2m) to the other end of the rope. In (b), m is lifted up by pulling the other end of the rope with a constant downward force F = 2mg. In which case, the acceleration of m is more?

$$\mathrm{The}\:\mathrm{pulley}\:\mathrm{arrangements}\:\mathrm{are}\:\mathrm{identical}. \\ $$$$\mathrm{The}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rope}\:\mathrm{is}\:\mathrm{negligible}.\:\mathrm{In} \\ $$$$\left(\mathrm{a}\right),\:\mathrm{the}\:\mathrm{mass}\:{m}\:\mathrm{is}\:\mathrm{lifted}\:\mathrm{up}\:\mathrm{by}\:\mathrm{attaching} \\ $$$$\mathrm{a}\:\mathrm{mass}\:\left(\mathrm{2}{m}\right)\:\mathrm{to}\:\mathrm{the}\:\mathrm{other}\:\mathrm{end}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rope}. \\ $$$$\mathrm{In}\:\left(\mathrm{b}\right),\:{m}\:\mathrm{is}\:\mathrm{lifted}\:\mathrm{up}\:\mathrm{by}\:\mathrm{pulling}\:\mathrm{the} \\ $$$$\mathrm{other}\:\mathrm{end}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rope}\:\mathrm{with}\:\mathrm{a}\:\mathrm{constant} \\ $$$$\mathrm{downward}\:\mathrm{force}\:{F}\:=\:\mathrm{2}{mg}.\:\mathrm{In}\:\mathrm{which} \\ $$$$\mathrm{case},\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:{m}\:\mathrm{is}\:\mathrm{more}? \\ $$

Question Number 18318    Answers: 0   Comments: 3

∫ ((x + sinx)/(cosx)) dx

$$\int\:\frac{\mathrm{x}\:+\:\mathrm{sinx}}{\mathrm{cosx}}\:\mathrm{dx} \\ $$

Question Number 18307    Answers: 1   Comments: 0

Question Number 18306    Answers: 1   Comments: 0

Question Number 18320    Answers: 1   Comments: 0

In a triangle ABC with fixed base BC, the vertex A moves such that cos B + cos C = 4 sin^2 (A/2) . If a, b and c denote the lengths of the sides of the triangle opposite to the angles A, B and C respectively, then (1) b + c = 4a (2) b + c = 2a (3) Locus of point A is an ellipse (4) Locus of point A is a pair of straight lines

$$\mathrm{In}\:\mathrm{a}\:\mathrm{triangle}\:{ABC}\:\mathrm{with}\:\mathrm{fixed}\:\mathrm{base}\:{BC}, \\ $$$$\mathrm{the}\:\mathrm{vertex}\:{A}\:\mathrm{moves}\:\mathrm{such}\:\mathrm{that}\:\mathrm{cos}\:{B}\:+ \\ $$$$\mathrm{cos}\:{C}\:=\:\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\frac{{A}}{\mathrm{2}}\:.\:\mathrm{If}\:{a},\:{b}\:\mathrm{and}\:{c}\:\mathrm{denote} \\ $$$$\mathrm{the}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle} \\ $$$$\mathrm{opposite}\:\mathrm{to}\:\mathrm{the}\:\mathrm{angles}\:{A},\:{B}\:\mathrm{and}\:{C} \\ $$$$\mathrm{respectively},\:\mathrm{then} \\ $$$$\left(\mathrm{1}\right)\:{b}\:+\:{c}\:=\:\mathrm{4}{a} \\ $$$$\left(\mathrm{2}\right)\:{b}\:+\:{c}\:=\:\mathrm{2}{a} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Locus}\:\mathrm{of}\:\mathrm{point}\:{A}\:\mathrm{is}\:\mathrm{an}\:\mathrm{ellipse} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Locus}\:\mathrm{of}\:\mathrm{point}\:{A}\:\mathrm{is}\:\mathrm{a}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{straight} \\ $$$$\mathrm{lines} \\ $$

Question Number 18719    Answers: 0   Comments: 2

If cos^2 x_1 + cos^2 x_2 + cos^2 x_3 + cos^2 x_4 + cos^2 x_5 = 5, then sin x_1 + 2sin x_2 + 3sin x_3 + 4sin x_4 + 5sin x_5 is less than or equal to

$$\mathrm{If}\:\mathrm{cos}^{\mathrm{2}} \:{x}_{\mathrm{1}} \:+\:\mathrm{cos}^{\mathrm{2}} \:{x}_{\mathrm{2}} \:+\:\mathrm{cos}^{\mathrm{2}} \:{x}_{\mathrm{3}} \:+\:\mathrm{cos}^{\mathrm{2}} \:{x}_{\mathrm{4}} \\ $$$$+\:\mathrm{cos}^{\mathrm{2}} \:{x}_{\mathrm{5}} \:=\:\mathrm{5},\:\mathrm{then}\:\mathrm{sin}\:{x}_{\mathrm{1}} \:+\:\mathrm{2sin}\:{x}_{\mathrm{2}} \:+ \\ $$$$\mathrm{3sin}\:{x}_{\mathrm{3}} \:+\:\mathrm{4sin}\:{x}_{\mathrm{4}} \:+\:\mathrm{5sin}\:{x}_{\mathrm{5}} \:\mathrm{is}\:\mathrm{less}\:\mathrm{than} \\ $$$$\mathrm{or}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 18299    Answers: 0   Comments: 2

x^x^x = 2, find x

$$\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } \:=\:\mathrm{2},\:\:\:\:\:\:\mathrm{find}\:\:\mathrm{x} \\ $$

Question Number 18470    Answers: 1   Comments: 0

Find the partial derivatives for each of the following (a) Z = 3x^2 (5x + 7y)^2 (b) Z = (w − x − y)^2 (3w + 2x − 4y)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{partial}\:\mathrm{derivatives}\:\mathrm{for}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Z}\:=\:\mathrm{3x}^{\mathrm{2}} \left(\mathrm{5x}\:+\:\mathrm{7y}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Z}\:=\:\left(\mathrm{w}\:−\:\mathrm{x}\:−\:\mathrm{y}\right)^{\mathrm{2}} \:\left(\mathrm{3w}\:+\:\mathrm{2x}\:−\:\mathrm{4y}\right) \\ $$

Question Number 18290    Answers: 0   Comments: 3

  Pg 1813      Pg 1814      Pg 1815      Pg 1816      Pg 1817      Pg 1818      Pg 1819      Pg 1820      Pg 1821      Pg 1822   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com