Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1816

Question Number 21405    Answers: 1   Comments: 0

Four dice are rolled. The number of ways in which at least one die shows 3, is

$$\mathrm{Four}\:\mathrm{dice}\:\mathrm{are}\:\mathrm{rolled}.\:\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways} \\ $$$$\mathrm{in}\:\mathrm{which}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{die}\:\mathrm{shows}\:\mathrm{3},\:\mathrm{is} \\ $$

Question Number 21404    Answers: 1   Comments: 0

Prove that (6n)! is divisible by 2^(2n) .3^n .

$$\mathrm{Prove}\:\mathrm{that}\:\left(\mathrm{6}{n}\right)!\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{2}^{\mathrm{2}{n}} .\mathrm{3}^{{n}} . \\ $$

Question Number 21401    Answers: 0   Comments: 0

∫_0 ^∞ ((xdx)/(e^x +1))=?

$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{xdx}}{{e}^{{x}} +\mathrm{1}}=? \\ $$

Question Number 21398    Answers: 1   Comments: 0

∫_( 0) ^∞ (1/(1+e^x )) dx =

$$\underset{\:\mathrm{0}} {\overset{\infty} {\int}}\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{e}^{{x}} }\:{dx}\:= \\ $$

Question Number 21394    Answers: 2   Comments: 0

Question Number 21392    Answers: 1   Comments: 0

Question Number 21390    Answers: 0   Comments: 0

∫_0 ^1 ((x^7 − 1)/(ln x)) dx

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\frac{{x}^{\mathrm{7}} \:−\:\mathrm{1}}{\mathrm{ln}\:{x}}\:{dx} \\ $$

Question Number 21388    Answers: 0   Comments: 4

A block of mass m is connected with another block of mass 2m by a light spring. 2m is connected with a hanging mass 3m by an inextensible light string. At the time of release of block 3m, find tension in the string and acceleration of all the masses.

$$\mathrm{A}\:\mathrm{block}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{is}\:\mathrm{connected}\:\mathrm{with} \\ $$$$\mathrm{another}\:\mathrm{block}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{2}{m}\:\mathrm{by}\:\mathrm{a}\:\mathrm{light} \\ $$$$\mathrm{spring}.\:\mathrm{2}{m}\:\mathrm{is}\:\mathrm{connected}\:\mathrm{with}\:\mathrm{a}\:\mathrm{hanging} \\ $$$$\mathrm{mass}\:\mathrm{3}{m}\:\mathrm{by}\:\mathrm{an}\:\mathrm{inextensible}\:\mathrm{light}\:\mathrm{string}. \\ $$$$\mathrm{At}\:\mathrm{the}\:\mathrm{time}\:\mathrm{of}\:\mathrm{release}\:\mathrm{of}\:\mathrm{block}\:\mathrm{3}{m},\:\mathrm{find} \\ $$$$\mathrm{tension}\:\mathrm{in}\:\mathrm{the}\:\mathrm{string}\:\mathrm{and}\:\mathrm{acceleration} \\ $$$$\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{masses}. \\ $$

Question Number 21377    Answers: 0   Comments: 0

Balls are dropped from the roof of a tower at a fixed interval of time. At the moment when 9th ball reaches the ground the nth ball is (3/4)th height of the tower. What is the value of n?

$$\mathrm{Balls}\:\mathrm{are}\:\mathrm{dropped}\:\mathrm{from}\:\mathrm{the}\:\mathrm{roof}\:\mathrm{of}\:\mathrm{a} \\ $$$$\mathrm{tower}\:\mathrm{at}\:\mathrm{a}\:\mathrm{fixed}\:\mathrm{interval}\:\mathrm{of}\:\mathrm{time}.\:\mathrm{At}\:\mathrm{the} \\ $$$$\mathrm{moment}\:\mathrm{when}\:\mathrm{9th}\:\mathrm{ball}\:\mathrm{reaches}\:\mathrm{the} \\ $$$$\mathrm{ground}\:\mathrm{the}\:{n}\mathrm{th}\:\mathrm{ball}\:\mathrm{is}\:\left(\mathrm{3}/\mathrm{4}\right)\mathrm{th}\:\mathrm{height} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{tower}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{n}? \\ $$

Question Number 21366    Answers: 3   Comments: 0

Question Number 21357    Answers: 1   Comments: 0

Solve : log_(2x+3) x^2 < 1

$$\mathrm{Solve}\::\:\mathrm{log}_{\mathrm{2}{x}+\mathrm{3}} {x}^{\mathrm{2}} \:<\:\mathrm{1} \\ $$

Question Number 21356    Answers: 1   Comments: 0

Solve : (2^((3x−1)/(x−1)) )^(1/3) < 8^((x−3)/(3x−7))

$$\mathrm{Solve}\::\:\sqrt[{\mathrm{3}}]{\mathrm{2}^{\frac{\mathrm{3}{x}−\mathrm{1}}{{x}−\mathrm{1}}} }\:<\:\mathrm{8}^{\frac{{x}−\mathrm{3}}{\mathrm{3}{x}−\mathrm{7}}} \\ $$

Question Number 21355    Answers: 1   Comments: 0

Solve : ∣x^2 + 3x∣ + x^2 − 2 ≥ 0

$$\mathrm{Solve}\::\:\mid{x}^{\mathrm{2}} \:+\:\mathrm{3}{x}\mid\:+\:{x}^{\mathrm{2}} \:−\:\mathrm{2}\:\geqslant\:\mathrm{0} \\ $$

Question Number 21354    Answers: 0   Comments: 4

Solve : (√(2x + 5)) + (√(x − 1)) > 8

$$\mathrm{Solve}\::\:\sqrt{\mathrm{2}{x}\:+\:\mathrm{5}}\:+\:\sqrt{{x}\:−\:\mathrm{1}}\:>\:\mathrm{8} \\ $$

Question Number 21374    Answers: 0   Comments: 2

In how many ways can the letters of the word PATLIPUTRA be arranged, so that the relative order of vowels are consonants do not alter?

$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{the}\:\mathrm{letters}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{word}\:\mathrm{PATLIPUTRA}\:\mathrm{be}\:\mathrm{arranged},\:\mathrm{so} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{relative}\:\mathrm{order}\:\mathrm{of}\:\mathrm{vowels}\:\mathrm{are} \\ $$$$\mathrm{consonants}\:\mathrm{do}\:\mathrm{not}\:\mathrm{alter}? \\ $$

Question Number 21350    Answers: 0   Comments: 0

prove (√2) < log_8 19 < (3)^(1/3)

$$\boldsymbol{{prove}}\: \\ $$$$\:\sqrt{\mathrm{2}}\:<\:\boldsymbol{{log}}_{\mathrm{8}} \mathrm{19}\:<\:\sqrt[{\mathrm{3}}]{\mathrm{3}} \\ $$

Question Number 21342    Answers: 1   Comments: 0

Question Number 21341    Answers: 2   Comments: 0

the angle between the straight lines x^2 +4xy+3y^2 =0 is

$${the}\:{angle}\:{between}\:{the}\:{straight}\:{lines}\:{x}^{\mathrm{2}} +\mathrm{4}{xy}+\mathrm{3}{y}^{\mathrm{2}} =\mathrm{0}\:{is} \\ $$

Question Number 21321    Answers: 1   Comments: 0

The number of real solutions of the equation 4x^(99) + 5x^(98) + 4x^(97) + 5x^(96) + ..... + 4x + 5 = 0 is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{real}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{4}{x}^{\mathrm{99}} \:+\:\mathrm{5}{x}^{\mathrm{98}} \:+\:\mathrm{4}{x}^{\mathrm{97}} \:+\:\mathrm{5}{x}^{\mathrm{96}} \:+ \\ $$$$.....\:+\:\mathrm{4}{x}\:+\:\mathrm{5}\:=\:\mathrm{0}\:\mathrm{is} \\ $$

Question Number 21319    Answers: 0   Comments: 0

If x, y, z are three real numbers such that x + y + z = 4 and x^2 + y^2 + z^2 = 6, then (1) (2/3) ≤ x, y, z ≤ 2 (2) 0 ≤ x, y, z ≤ 2 (3) 1 ≤ x, y, z ≤ 3 (4) 2 ≤ x, y, z ≤ 3

$$\mathrm{If}\:{x},\:{y},\:{z}\:\mathrm{are}\:\mathrm{three}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{such} \\ $$$$\mathrm{that}\:{x}\:+\:{y}\:+\:{z}\:=\:\mathrm{4}\:\mathrm{and}\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} \:=\:\mathrm{6}, \\ $$$$\mathrm{then} \\ $$$$\left(\mathrm{1}\right)\:\frac{\mathrm{2}}{\mathrm{3}}\:\leqslant\:{x},\:{y},\:{z}\:\leqslant\:\mathrm{2} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{0}\:\leqslant\:{x},\:{y},\:{z}\:\leqslant\:\mathrm{2} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{1}\:\leqslant\:{x},\:{y},\:{z}\:\leqslant\:\mathrm{3} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{2}\:\leqslant\:{x},\:{y},\:{z}\:\leqslant\:\mathrm{3} \\ $$

Question Number 21316    Answers: 0   Comments: 0

Let p = (x_1 − x_2 )^2 + (x_1 − x_3 )^2 + .... + (x_1 − x_6 )^2 + (x_2 − x_3 )^2 + (x_2 − x_4 )^2 + .... + (x_2 − x_6 )^2 + .... + (x_5 − x_6 )^2 = Σ_(1≤i<j≤6) ^6 (x_i − x_j )^2 . Then the maximum value of p if each x_i (i = 1, 2, ....., 6) has the value 0 and 1 is

$$\mathrm{Let}\:{p}\:=\:\left({x}_{\mathrm{1}} \:−\:{x}_{\mathrm{2}} \right)^{\mathrm{2}} \:+\:\left({x}_{\mathrm{1}} \:−\:{x}_{\mathrm{3}} \right)^{\mathrm{2}} \:+\:....\:+ \\ $$$$\left({x}_{\mathrm{1}} \:−\:{x}_{\mathrm{6}} \right)^{\mathrm{2}} \:+\:\left({x}_{\mathrm{2}} \:−\:{x}_{\mathrm{3}} \right)^{\mathrm{2}} \:+\:\left({x}_{\mathrm{2}} \:−\:{x}_{\mathrm{4}} \right)^{\mathrm{2}} \:+ \\ $$$$....\:+\:\left({x}_{\mathrm{2}} \:−\:{x}_{\mathrm{6}} \right)^{\mathrm{2}} \:+\:....\:+\:\left({x}_{\mathrm{5}} \:−\:{x}_{\mathrm{6}} \right)^{\mathrm{2}} \:= \\ $$$$\underset{\mathrm{1}\leqslant{i}<{j}\leqslant\mathrm{6}} {\overset{\mathrm{6}} {\sum}}\left({x}_{{i}} \:−\:{x}_{{j}} \right)^{\mathrm{2}} . \\ $$$$\mathrm{Then}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:{p}\:\mathrm{if}\:\mathrm{each} \\ $$$${x}_{{i}} \:\left({i}\:=\:\mathrm{1},\:\mathrm{2},\:.....,\:\mathrm{6}\right)\:\mathrm{has}\:\mathrm{the}\:\mathrm{value}\:\mathrm{0}\:\mathrm{and} \\ $$$$\mathrm{1}\:\mathrm{is} \\ $$

Question Number 21315    Answers: 0   Comments: 0

The number of real solutions of the equation ((97 − x))^(1/4) + (x)^(1/4) = 5

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{real}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\sqrt[{\mathrm{4}}]{\mathrm{97}\:−\:{x}}\:+\:\sqrt[{\mathrm{4}}]{{x}}\:=\:\mathrm{5} \\ $$

Question Number 21314    Answers: 1   Comments: 0

Let α and β be the root of x^2 + px − (1/(2p^2 )) = 0, p ∈ R. The minimum value of α^4 + β^4 is

$$\mathrm{Let}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{be}\:\mathrm{the}\:\mathrm{root}\:\mathrm{of}\:{x}^{\mathrm{2}} \:+\:{px}\:−\:\frac{\mathrm{1}}{\mathrm{2}{p}^{\mathrm{2}} }\:=\:\mathrm{0}, \\ $$$${p}\:\in\:{R}.\:\mathrm{The}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:\mathrm{is} \\ $$

Question Number 21313    Answers: 0   Comments: 4

Let k be a real number such that the inequality (√(x − 3)) + (√(6 − x)) ≥ k has a solution then the maximum value of k is

$$\mathrm{Let}\:{k}\:\mathrm{be}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{inequality}\:\sqrt{{x}\:−\:\mathrm{3}}\:+\:\sqrt{\mathrm{6}\:−\:{x}}\:\geqslant\:{k}\:\mathrm{has}\:\mathrm{a} \\ $$$$\mathrm{solution}\:\mathrm{then}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:{k} \\ $$$$\mathrm{is} \\ $$

Question Number 21311    Answers: 0   Comments: 0

Let a and b be positive real numbers with a^3 + b^3 = a − b, and k = a^2 + 4b^2 , then (1) k < 1 (2) k >1 (3) k = 1 (4) k > 2

$$\mathrm{Let}\:{a}\:\mathrm{and}\:{b}\:\mathrm{be}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$\mathrm{with}\:{a}^{\mathrm{3}} \:+\:{b}^{\mathrm{3}} \:=\:{a}\:−\:{b},\:\mathrm{and}\:{k}\:=\:{a}^{\mathrm{2}} \:+\:\mathrm{4}{b}^{\mathrm{2}} , \\ $$$$\mathrm{then} \\ $$$$\left(\mathrm{1}\right)\:{k}\:<\:\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:{k}\:>\mathrm{1} \\ $$$$\left(\mathrm{3}\right)\:{k}\:=\:\mathrm{1} \\ $$$$\left(\mathrm{4}\right)\:{k}\:>\:\mathrm{2} \\ $$

Question Number 21310    Answers: 1   Comments: 8

What do you guys think of creating a Telegram group to discuss theory and more descriptive questions?

$$\mathrm{What}\:\mathrm{do}\:\mathrm{you}\:\mathrm{guys}\:\mathrm{think}\:\mathrm{of} \\ $$$$\mathrm{creating}\:\mathrm{a}\:\mathrm{Telegram}\:\mathrm{group}\:\mathrm{to} \\ $$$$\mathrm{discuss}\:\mathrm{theory}\:\mathrm{and}\:\mathrm{more}\:\mathrm{descriptive} \\ $$$$\mathrm{questions}? \\ $$

  Pg 1811      Pg 1812      Pg 1813      Pg 1814      Pg 1815      Pg 1816      Pg 1817      Pg 1818      Pg 1819      Pg 1820   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com