Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1815
Question Number 28257 Answers: 0 Comments: 0
$${let}\:{give}\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\mathrm{3}\:\:\:\:\:\:\:−\mathrm{3}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{A}\:\:\:\:\:=\:\:\:\:\:\:\left(\:\:−\mathrm{1}\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\right)\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:\:−\mathrm{1}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\right)\: \\ $$$${find}\:{a}\:{diagoal}\:{matrice}\:{D}\:{and}\:{a}\:{inversible}\:{matrice}\:{P}\:\:{wich} \\ $$$${verify}\:{A}\:\:=\:{P}.{D}.{P}^{−\mathrm{1}} \:\:\:{and}\:\:{calculate}\:{A}^{{n}} . \\ $$
Question Number 28248 Answers: 1 Comments: 0
Question Number 28247 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{lnx}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:. \\ $$
Question Number 28242 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {lnxdx}\:\:. \\ $$
Question Number 28241 Answers: 1 Comments: 1
Question Number 28240 Answers: 1 Comments: 0
Question Number 28255 Answers: 0 Comments: 0
$${let}\:{give}\:{p}=\left(_{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:−\mathrm{2}} ^{\mathrm{1}\:\:\:\:\:\:\:\:\:\:−\mathrm{1}} \:\:\right)\:\:{and}\:\:{D}=\:\:\left(_{\mathrm{3}\:\:\:\:\:\:\:\:\:\:−\mathrm{6}} ^{\mathrm{2}\:\:\:\:\:\:\:\:−\mathrm{2}} \:\right)\:{calculate} \\ $$$${A}=\:{p}.{D}.{p}^{−\mathrm{1}} \:. \\ $$
Question Number 28256 Answers: 0 Comments: 0
$$\left.{let}\:{give}\:\:\:{A}=\:\:_{\:\:\:\:\left(\right.} \:−\mathrm{1}\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:−\mathrm{1}\:\:\:\:\mathrm{1}\right)\:\:\:\:\:\:\:{find}\:\:{A}^{{n}} \:\:{for}\:{n}\:{integr}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:−\mathrm{1}\right) \\ $$$$\:\:\:\: \\ $$
Question Number 28219 Answers: 0 Comments: 4
Question Number 28211 Answers: 0 Comments: 6
Question Number 28199 Answers: 1 Comments: 0
$${suppose}\:{one}\:{of}\:{the}\:{side}\:{of}\:{any} \\ $$$${box}\:{that}\:{can}\:{be}\:{carried}\:{onto}\:{an} \\ $$$${airplane}\:{must}\:{be}\:{less}\:{than}\:\mathrm{8}{m}. \\ $$$${Find}\:{the}\:{maximum}\:{value}\:{of}\:{such} \\ $$$${a}\:{box}\:{if}\:{the}\:{sum}\:{of}\:{the}\:{three}\:{sides} \\ $$$${can}\:{not}\:{exceed}\:\mathrm{46}{m}. \\ $$
Question Number 28198 Answers: 1 Comments: 0
$${Find}\:{the}\:{shortest}\:{distance}\:{from} \\ $$$${the}\:{origin}\:{to}\:{the}\:{curve}\:{xy}=\mathrm{3} \\ $$
Question Number 28190 Answers: 1 Comments: 2
Question Number 28189 Answers: 0 Comments: 2
Question Number 28188 Answers: 0 Comments: 0
Question Number 28186 Answers: 0 Comments: 1
$${Find}\:{the}\:{number}\:{of}\:{positive}\:{integers} \\ $$$${x}\:{such}\:{that}\:\left[\frac{{x}}{{m}−\mathrm{1}}\right]=\left[\frac{{x}}{{m}+\mathrm{1}}\right],\:{for}\:{a} \\ $$$${particular}\:{integer}\:{m}\geqslant\mathrm{2}. \\ $$$$\left[\:\right]\:{means}\:{G}.{I}.{F}. \\ $$
Question Number 28179 Answers: 0 Comments: 1
Question Number 28177 Answers: 0 Comments: 1
Question Number 28174 Answers: 0 Comments: 2
$$\mathrm{if}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{root}\:\mathrm{7x}+\mathrm{px}−\mathrm{q}=\mathrm{0}\:\mathrm{is}\:\mathrm{7}\:\mathrm{then}\:\mathrm{p}= \\ $$$$?? \\ $$
Question Number 28171 Answers: 1 Comments: 1
Question Number 28170 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}\:−{e}^{−{x}} −\:{e}^{−\frac{\mathrm{1}}{{x}}} }{{x}}{dx}\:\:. \\ $$
Question Number 28169 Answers: 0 Comments: 1
$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\left({lnx}\right)^{{k}} }{\mathrm{1}−{x}}{dx}=\left(−\mathrm{1}\right)^{{k}} \:\left({k}!\right)\xi\left({k}+\mathrm{1}\right)\:\:. \\ $$
Question Number 28168 Answers: 0 Comments: 0
$${find}\:{the}\:{nature}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} {arcos}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}^{{a}} }\right){z}^{{n}} \:\:{with}\:{a}>\mathrm{1}. \\ $$
Question Number 28166 Answers: 0 Comments: 0
$${let}\:{give}\:{w}=\:{e}^{{i}\frac{\mathrm{2}\pi}{{n}}} \:\:\:\:{and}\:\:{Z}=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{w}^{{k}^{\mathrm{2}} } \:\:\:{find}\:\mid{Z}\mid^{\mathrm{2}} \:{in} \\ $$$${form}\:{of}\:{double}\:{sum}. \\ $$
Question Number 28165 Answers: 0 Comments: 0
$${let}\:{give}\:{w}=\:{e}^{{i}\frac{\mathrm{2}\pi}{{n}}} \:\:\:{calculate}\:\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\mathrm{1}+{w}^{{k}} \right)^{{n}} \:. \\ $$
Question Number 28164 Answers: 1 Comments: 0
$${simplify}\: \\ $$$${A}={cos}^{\mathrm{4}} \theta\:+{cos}^{\mathrm{4}} \left(\theta+\frac{\pi}{\mathrm{4}}\right)\:+{cos}^{\mathrm{4}} \left(\theta\:+\frac{\mathrm{2}\pi}{\mathrm{4}}\right)\:+{cos}^{\mathrm{4}} \left(\theta\:+\frac{\mathrm{3}\pi}{\mathrm{4}}\right). \\ $$
Pg 1810 Pg 1811 Pg 1812 Pg 1813 Pg 1814 Pg 1815 Pg 1816 Pg 1817 Pg 1818 Pg 1819
Terms of Service
Privacy Policy
Contact: info@tinkutara.com