Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1814
Question Number 28610 Answers: 0 Comments: 0
$${let}\:{give}\:{I}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dt}}{\sqrt{{sin}^{\mathrm{2}} {t}\:+{x}^{\mathrm{2}} \:{cos}^{\mathrm{2}} {t}}}\:\:{and} \\ $$$${J}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{cost}}{\sqrt{{sin}^{\mathrm{2}} {t}\:+{x}^{\mathrm{2}} {cos}^{\mathrm{2}} {t}}}{dt}\:{cslculate}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \left({I}\left({x}\right)−{J}\left({x}\right)\right) \\ $$$${and}\:{prove}\:{that}\:\:{I}\left({x}\right)=_{{x}\rightarrow\mathrm{0}^{+} } \:−{lnx}\:+\mathrm{2}{ln}\mathrm{2}\:+{o}\left(\mathrm{1}\right). \\ $$
Question Number 28609 Answers: 0 Comments: 0
$${calculate}\:{cotanx}\:−\mathrm{2}{cotan}\left(\mathrm{2}{x}\right){then}\:{simlify} \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\mathrm{1}}{\mathrm{2}^{{k}} }{tan}\left(\frac{\alpha}{\mathrm{2}^{{k}} }\right). \\ $$$$ \\ $$
Question Number 28608 Answers: 1 Comments: 0
$${transform}\:{tanp}−{tanq}\:{then}\:{find}\:{the}\:{value}\:{of}\: \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\mathrm{1}}{{cos}\left({k}\theta\right){cos}\left(\left({k}+\mathrm{1}\right)\theta\right.}\:.\:\:\theta\in{R}. \\ $$
Question Number 28607 Answers: 0 Comments: 0
$${simplify}\:\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\mathrm{3}^{{k}} \:{sin}^{\mathrm{3}} \left(\frac{\alpha}{\mathrm{3}^{{k}+\mathrm{1}} }\right)\:. \\ $$$$ \\ $$
Question Number 28611 Answers: 0 Comments: 1
$$\left.{let}\:{give}\:\theta\in\right]\mathrm{0},\pi\left[\:\:{prove}\:{that}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{{e}^{−{i}\theta} −{t}}=\:\sum_{{n}=\mathrm{1}} ^{+\infty} \:\:\frac{{e}^{{in}\theta} }{{n}}\:\:.\right. \\ $$
Question Number 28743 Answers: 1 Comments: 2
$${find}\:{the}\:{next}\:\mathrm{4}\:{term}\:{and}\:{the} \\ $$$${n}^{{th}} \:{term} \\ $$$$\mathrm{1},\mathrm{2},\mathrm{5},\mathrm{26}....... \\ $$
Question Number 28600 Answers: 0 Comments: 4
Question Number 28597 Answers: 1 Comments: 1
Question Number 28591 Answers: 1 Comments: 0
$${What}\:{is}\:{the}\:{difference}\:{between} \\ $$$${angular}\:{frequency}\:{and}\:{angular} \\ $$$${velocity}? \\ $$
Question Number 28583 Answers: 1 Comments: 1
Question Number 28574 Answers: 1 Comments: 2
Question Number 28586 Answers: 0 Comments: 0
$$\mathrm{When}\:\mathrm{dry}\:\mathrm{chlorine}\:\mathrm{is}\:\mathrm{passed}\:\mathrm{thru} \\ $$$$\mathrm{silver}\:\mathrm{chlorate}\:\mathrm{heated}\:\mathrm{to}\:\mathrm{90}°\mathrm{C} \\ $$$$\mathrm{then}\:\mathrm{which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{oxide}\:\mathrm{of}\:\mathrm{chlorine} \\ $$$$\mathrm{is}\:\mathrm{formed}\:\mathrm{and}\:\mathrm{why}? \\ $$
Question Number 28585 Answers: 1 Comments: 0
Question Number 28565 Answers: 1 Comments: 0
Question Number 28554 Answers: 2 Comments: 0
$$\frac{\left({a}\:−\:{b}\right)}{\left({c}\:−\:{d}\right)}\:\:=\:\:\mathrm{3} \\ $$$$\frac{\left({a}\:−\:{c}\right)}{\left({b}\:−\:{d}\right)}\:\:=\:\:\mathrm{4} \\ $$$$\frac{\left({a}\:−\:{d}\right)}{\left({b}\:−\:{c}\right)}\:\:=\:\:? \\ $$$$ \\ $$
Question Number 28547 Answers: 1 Comments: 0
Question Number 28546 Answers: 0 Comments: 0
$${let}\:{give}\:{w}={e}^{{i}\frac{\mathrm{2}\pi}{{n}}} \:\:\:{and}\:\:{S}=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{w}^{{k}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\:{S}=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{w}^{\left({q}+{k}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:\mid{S}\mid. \\ $$
Question Number 28544 Answers: 0 Comments: 2
$${if}\:\:{a}_{\mathrm{1}} \:,{a}_{\mathrm{2}} ,...{a}_{\mathrm{14}\:} {are}\:{roots}\:{of}\:{the}\:{polynomial} \\ $$$${p}\left({x}\right)={x}^{\mathrm{14}} +{x}^{\mathrm{8}} \:\mathrm{2}{x}+\mathrm{1}\:\:\:{calculate}\:\:\sum_{{i}=\mathrm{1}} ^{\mathrm{14}} \:\:\frac{\mathrm{1}}{\left({a}_{{i}} −\mathrm{1}\right)^{\mathrm{2}} }\:\:. \\ $$
Question Number 28543 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} +{t}\:+{h}^{\mathrm{2}} \right)^{\mathrm{2}} \:+{h}^{\mathrm{2}} }\:\:\:. \\ $$
Question Number 28542 Answers: 0 Comments: 0
$${if}\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}−{x}−{y}−{xy}}\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{g}_{{n}} \left({y}\right)\:{x}^{{n}} \:\:{find}\:{g}_{{n}} \:\:. \\ $$
Question Number 28541 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sinx}}{{e}^{{ax}} −\mathrm{1}}{dx}=\:\sum_{{p}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\mathrm{1}+{p}^{\mathrm{2}} {a}^{\mathrm{2}} }\:\:\:\:\:{with}\:{a}>\mathrm{0} \\ $$
Question Number 28539 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}−{cos}\left({xt}\right)}{{t}^{\mathrm{2}} }\:{e}^{−{t}} {dt}\:. \\ $$
Question Number 28538 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of} \\ $$$${u}_{{n}\:} \:\:=\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }}\:\:−{argsh}\left({n}\right)\:\:{and} \\ $$$${v}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }}\:\:. \\ $$$$ \\ $$
Question Number 28537 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\:\forall\:{n}\in\:\mathbb{N} \\ $$$$\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\left({n}+\mathrm{1}\right)^{\mathrm{2}} }}\:\leqslant\:{argsh}\left({n}+\mathrm{1}\right)\:−{argsh}\left({n}\right)\leqslant\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}+{n}^{\mathrm{2}} }}\:. \\ $$
Question Number 28536 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\:{V}_{{n}} =\:\prod_{\mathrm{1}\leqslant{p}\leqslant{n}} \left(\mathrm{1}\:+\frac{{i}}{{p}}\right) \\ $$$${i}\in\:{C}\:{and}\:{i}^{\mathrm{2}} =−\mathrm{1}\:. \\ $$
Question Number 28535 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\:{U}_{{n}} =\:\left(\mathrm{1}+\frac{{z}}{{n}}\right)^{{n}} \:{with}\:{z}\in{C}\:. \\ $$
Pg 1809 Pg 1810 Pg 1811 Pg 1812 Pg 1813 Pg 1814 Pg 1815 Pg 1816 Pg 1817 Pg 1818
Terms of Service
Privacy Policy
Contact: info@tinkutara.com