Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1811

Question Number 28256    Answers: 0   Comments: 0

let give A= _( () −1 1 1) ( 1 −1 1) find A^n for n integr. ( 1 1 −1)

$$\left.{let}\:{give}\:\:\:{A}=\:\:_{\:\:\:\:\left(\right.} \:−\mathrm{1}\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:−\mathrm{1}\:\:\:\:\mathrm{1}\right)\:\:\:\:\:\:\:{find}\:\:{A}^{{n}} \:\:{for}\:{n}\:{integr}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:−\mathrm{1}\right) \\ $$$$\:\:\:\: \\ $$

Question Number 28219    Answers: 0   Comments: 4

Question Number 28211    Answers: 0   Comments: 6

Question Number 28199    Answers: 1   Comments: 0

suppose one of the side of any box that can be carried onto an airplane must be less than 8m. Find the maximum value of such a box if the sum of the three sides can not exceed 46m.

$${suppose}\:{one}\:{of}\:{the}\:{side}\:{of}\:{any} \\ $$$${box}\:{that}\:{can}\:{be}\:{carried}\:{onto}\:{an} \\ $$$${airplane}\:{must}\:{be}\:{less}\:{than}\:\mathrm{8}{m}. \\ $$$${Find}\:{the}\:{maximum}\:{value}\:{of}\:{such} \\ $$$${a}\:{box}\:{if}\:{the}\:{sum}\:{of}\:{the}\:{three}\:{sides} \\ $$$${can}\:{not}\:{exceed}\:\mathrm{46}{m}. \\ $$

Question Number 28198    Answers: 1   Comments: 0

Find the shortest distance from the origin to the curve xy=3

$${Find}\:{the}\:{shortest}\:{distance}\:{from} \\ $$$${the}\:{origin}\:{to}\:{the}\:{curve}\:{xy}=\mathrm{3} \\ $$

Question Number 28190    Answers: 1   Comments: 2

Question Number 28189    Answers: 0   Comments: 2

Question Number 28188    Answers: 0   Comments: 0

Question Number 28186    Answers: 0   Comments: 1

Find the number of positive integers x such that [(x/(m−1))]=[(x/(m+1))], for a particular integer m≥2. [ ] means G.I.F.

$${Find}\:{the}\:{number}\:{of}\:{positive}\:{integers} \\ $$$${x}\:{such}\:{that}\:\left[\frac{{x}}{{m}−\mathrm{1}}\right]=\left[\frac{{x}}{{m}+\mathrm{1}}\right],\:{for}\:{a} \\ $$$${particular}\:{integer}\:{m}\geqslant\mathrm{2}. \\ $$$$\left[\:\right]\:{means}\:{G}.{I}.{F}. \\ $$

Question Number 28179    Answers: 0   Comments: 1

Question Number 28177    Answers: 0   Comments: 1

Question Number 28174    Answers: 0   Comments: 2

if the sum of root 7x+px−q=0 is 7 then p= ??

$$\mathrm{if}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{root}\:\mathrm{7x}+\mathrm{px}−\mathrm{q}=\mathrm{0}\:\mathrm{is}\:\mathrm{7}\:\mathrm{then}\:\mathrm{p}= \\ $$$$?? \\ $$

Question Number 28171    Answers: 1   Comments: 1

Question Number 28170    Answers: 0   Comments: 0

find ∫_0 ^1 ((1 −e^(−x) − e^(−(1/x)) )/x)dx .

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}\:−{e}^{−{x}} −\:{e}^{−\frac{\mathrm{1}}{{x}}} }{{x}}{dx}\:\:. \\ $$

Question Number 28169    Answers: 0   Comments: 1

prove that ∫_0 ^1 (((lnx)^k )/(1−x))dx=(−1)^k (k!)ξ(k+1) .

$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\left({lnx}\right)^{{k}} }{\mathrm{1}−{x}}{dx}=\left(−\mathrm{1}\right)^{{k}} \:\left({k}!\right)\xi\left({k}+\mathrm{1}\right)\:\:. \\ $$

Question Number 28168    Answers: 0   Comments: 0

find the nature of Σ_(n=1) ^∞ arcos(1−(1/n^a ))z^n with a>1.

$${find}\:{the}\:{nature}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} {arcos}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}^{{a}} }\right){z}^{{n}} \:\:{with}\:{a}>\mathrm{1}. \\ $$

Question Number 28166    Answers: 0   Comments: 0

let give w= e^(i((2π)/n)) and Z= Σ_(k=0) ^(n−1) w^k^2 find ∣Z∣^2 in form of double sum.

$${let}\:{give}\:{w}=\:{e}^{{i}\frac{\mathrm{2}\pi}{{n}}} \:\:\:\:{and}\:\:{Z}=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{w}^{{k}^{\mathrm{2}} } \:\:\:{find}\:\mid{Z}\mid^{\mathrm{2}} \:{in} \\ $$$${form}\:{of}\:{double}\:{sum}. \\ $$

Question Number 28165    Answers: 0   Comments: 0

let give w= e^(i((2π)/n)) calculate Σ_(k=0) ^(n−1) (1+w^k )^n .

$${let}\:{give}\:{w}=\:{e}^{{i}\frac{\mathrm{2}\pi}{{n}}} \:\:\:{calculate}\:\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\mathrm{1}+{w}^{{k}} \right)^{{n}} \:. \\ $$

Question Number 28164    Answers: 1   Comments: 0

simplify A=cos^4 θ +cos^4 (θ+(π/4)) +cos^4 (θ +((2π)/4)) +cos^4 (θ +((3π)/4)).

$${simplify}\: \\ $$$${A}={cos}^{\mathrm{4}} \theta\:+{cos}^{\mathrm{4}} \left(\theta+\frac{\pi}{\mathrm{4}}\right)\:+{cos}^{\mathrm{4}} \left(\theta\:+\frac{\mathrm{2}\pi}{\mathrm{4}}\right)\:+{cos}^{\mathrm{4}} \left(\theta\:+\frac{\mathrm{3}\pi}{\mathrm{4}}\right). \\ $$

Question Number 28163    Answers: 0   Comments: 0

let give z= e^(i((2π)/(5 ))) and a= z +z^4 , b= z^2 +z^3 find a equation wich have a and for rootsthen find the values of cos(((2π)/(5)))), sin(((2π)/5)),cos(((4π)/5)) ,sin(((4π)/5)) ,cos((π/5)).

$${let}\:{give}\:{z}=\:{e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{5}\:}} \:\:\:\:{and}\:\:{a}=\:{z}\:+{z}^{\mathrm{4}} \:\:\:\:,\:\:\:{b}=\:{z}^{\mathrm{2}} +{z}^{\mathrm{3}} \\ $$$${find}\:{a}\:{equation}\:{wich}\:{have}\:{a}\:{and}\:{for}\:{rootsthen}\:{find} \\ $$$${the}\:{values}\:{of}\:{cos}\left(\frac{\mathrm{2}\pi}{\left.\mathrm{5}\right)}\right),\:{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right),{cos}\left(\frac{\mathrm{4}\pi}{\mathrm{5}}\right)\:,{sin}\left(\frac{\mathrm{4}\pi}{\mathrm{5}}\right)\:,{cos}\left(\frac{\pi}{\mathrm{5}}\right). \\ $$

Question Number 28162    Answers: 0   Comments: 1

find ∫_(1/2) ^2 (1+(1/x^2 ))arctanxdx.

$${find}\:\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){arctanxdx}. \\ $$

Question Number 28161    Answers: 0   Comments: 0

find the value of ∫∫_W ln(1+x+y)dxdy with W={(x,y)∈R^2 / x+y≤1 and x≥0 and y≥0}.

$${find}\:{the}\:{value}\:{of}\:\int\int_{{W}} {ln}\left(\mathrm{1}+{x}+{y}\right){dxdy}\:{with} \\ $$$${W}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:{x}+{y}\leqslant\mathrm{1}\:{and}\:{x}\geqslant\mathrm{0}\:{and}\:{y}\geqslant\mathrm{0}\right\}. \\ $$

Question Number 28160    Answers: 0   Comments: 2

find ∫∫_D (√(xy)) dxdy with D={(x,y)∈R^ /(x^2 +y^2 )^2 ≤xy}

$${find}\:\int\int_{{D}} \:\:\sqrt{{xy}}\:{dxdy}\:{with}\:{D}=\left\{\left({x},{y}\right)\in{R}^{} \:/\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\mathrm{2}} \leqslant{xy}\right\} \\ $$

Question Number 28159    Answers: 0   Comments: 1

let give D=[0,(π/2)]×[0,(1/2)] find the value of ∫∫_D ((dxdy)/(ycosx +1)) .

$${let}\:{give}\:{D}=\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]×\left[\mathrm{0},\frac{\mathrm{1}}{\mathrm{2}}\right]\:\:{find}\:{the}\:{value}\:{of} \\ $$$$\int\int_{{D}} \:\:\:\frac{{dxdy}}{{ycosx}\:+\mathrm{1}}\:\:. \\ $$

Question Number 28158    Answers: 1   Comments: 0

calculate ∫∫_(x^2 +y^2 ≤1) ((dxdy)/(3+x^2 +y^2 )) .

$${calculate}\:\int\int_{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant\mathrm{1}} \:\:\:\frac{{dxdy}}{\mathrm{3}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\:. \\ $$

Question Number 28185    Answers: 1   Comments: 0

M, N are endpoints of a diameter 4x−y=15 of circle x^2 +y^2 −6x+6y−16=0 ; and are also on the tangents at the end points of the major axis of an ellipse respectively, such that MN is also tangent to the same ellipse at point P. If the major axis of the ellipse is along y=x, find eccentricity, length of latus rectum, centre and equation of derectrices.

$${M},\:{N}\:{are}\:{endpoints}\:{of}\:{a}\:{diameter} \\ $$$$\:\mathrm{4}{x}−{y}=\mathrm{15}\:\:{of}\:{circle} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{6}{y}−\mathrm{16}=\mathrm{0}\:;\:{and}\:{are} \\ $$$${also}\:{on}\:{the}\:{tangents}\:{at}\:{the}\:{end} \\ $$$${points}\:{of}\:{the}\:{major}\:{axis}\:{of}\:{an} \\ $$$${ellipse}\:{respectively},\:{such}\:{that} \\ $$$${MN}\:{is}\:{also}\:{tangent}\:{to}\:{the}\:{same} \\ $$$${ellipse}\:{at}\:{point}\:{P}. \\ $$$${If}\:{the}\:{major}\:{axis}\:{of}\:{the}\:{ellipse} \\ $$$${is}\:{along}\:{y}={x},\:{find} \\ $$$$\:\:\:{eccentricity},\:{length}\:{of}\:{latus} \\ $$$${rectum},\:{centre}\:{and}\:{equation}\:{of} \\ $$$${derectrices}. \\ $$

  Pg 1806      Pg 1807      Pg 1808      Pg 1809      Pg 1810      Pg 1811      Pg 1812      Pg 1813      Pg 1814      Pg 1815   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com