Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1811

Question Number 28808    Answers: 2   Comments: 0

Question Number 28806    Answers: 1   Comments: 0

If n(A)=15 and n(B)=25, (a) What are the greatest and least values of n(AuB)? (b) What are the greatest and least value of n(AnB)? (c) Draw Venn diagrams to illustrate the four situations in (a) and (b) above

$$\mathrm{If}\:\mathrm{n}\left(\mathrm{A}\right)=\mathrm{15}\:\mathrm{and}\:\mathrm{n}\left(\mathrm{B}\right)=\mathrm{25},\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{and}\:\mathrm{least}\:\mathrm{values}\:\mathrm{of}\:\mathrm{n}\left(\mathrm{AuB}\right)? \\ $$$$\left(\mathrm{b}\right)\:\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{and}\:\mathrm{least}\:\mathrm{value}\:\mathrm{of}\:\mathrm{n}\left(\mathrm{AnB}\right)? \\ $$$$\left(\mathrm{c}\right)\:\mathrm{Draw}\:\mathrm{Venn}\:\mathrm{diagrams}\:\mathrm{to}\:\mathrm{illustrate}\:\mathrm{the}\:\mathrm{four}\: \\ $$$$\:\:\:\:\:\:\:\mathrm{situations}\:\mathrm{in}\:\left(\mathrm{a}\right)\:\mathrm{and}\:\left(\mathrm{b}\right)\:\mathrm{above} \\ $$

Question Number 28805    Answers: 1   Comments: 0

In a competition, a school awarded medals in different categories. 36 medals in dance,12 in dramatics and 18 medals in music.If these medals went to total 45,and only 4 persons got medals in all three catogories.Using set notations, how many received in exactly two of these categories?

$${In}\:{a}\:{competition},\:{a}\:{school}\:{awarded} \\ $$$${medals}\:{in}\:{different}\:{categories}. \\ $$$$\mathrm{36}\:{medals}\:{in}\:{dance},\mathrm{12}\:{in}\:{dramatics} \\ $$$${and}\:\mathrm{18}\:{medals}\:{in}\:{music}.{If}\:{these} \\ $$$${medals}\:{went}\:{to}\:{total}\:\mathrm{45},{and}\:{only} \\ $$$$\mathrm{4}\:{persons}\:{got}\:{medals}\:{in}\:{all}\:{three} \\ $$$${catogories}.{Using}\:{set}\:{notations}, \\ $$$${how}\:{many}\:{received}\:{in}\:{exactly} \\ $$$${two}\:{of}\:{these}\:{categories}? \\ $$

Question Number 28779    Answers: 3   Comments: 1

Question Number 28770    Answers: 1   Comments: 6

lim_(x→+∞) ((5x^4 −10x^2 +1)/(−3x^3 +10x^2 +50))

$$\underset{{x}\rightarrow+\infty} {{lim}}\:\frac{\mathrm{5}{x}^{\mathrm{4}} −\mathrm{10}{x}^{\mathrm{2}} +\mathrm{1}}{−\mathrm{3}{x}^{\mathrm{3}} +\mathrm{10}{x}^{\mathrm{2}} +\mathrm{50}} \\ $$

Question Number 28762    Answers: 1   Comments: 6

Question Number 28739    Answers: 1   Comments: 0

if S_n =((a(r^n −1))/(r−1)) make r the subject of formula

$${if}\:{S}_{{n}} =\frac{{a}\left({r}^{{n}} −\mathrm{1}\right)}{{r}−\mathrm{1}}\: \\ $$$$ \\ $$$${make}\:{r}\:{the}\:{subject}\:{of}\:{formula} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 28709    Answers: 1   Comments: 0

Question Number 28708    Answers: 0   Comments: 0

If θ = log_e {tan(((3π)/8))} , prove that 3 tanh(2θ) = 2(√2)

$$\mathrm{If}\:\:\:\theta\:\:=\:\:\mathrm{log}_{\mathrm{e}} \left\{\mathrm{tan}\left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)\right\}\:,\:\:\:\mathrm{prove}\:\mathrm{that}\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\:\mathrm{tanh}\left(\mathrm{2}\theta\right)\:=\:\mathrm{2}\sqrt{\mathrm{2}} \\ $$

Question Number 28706    Answers: 1   Comments: 7

most important question gor boar or iit solve the integration (1/(3sinx+4cosx))

$${most}\:{important}\:{question}\:{gor}\:{boar}\:{or}\:{iit}\: \\ $$$${solve}\:{the}\:{integration}\:\:\frac{\mathrm{1}}{\mathrm{3}{sinx}+\mathrm{4}{cosx}} \\ $$

Question Number 28705    Answers: 1   Comments: 0

solve the integrayion ((sin2x)/(sin5xsin3x))

$${solve}\:{the}\:{integrayion}\:\frac{{sin}\mathrm{2}{x}}{{sin}\mathrm{5}{xsin}\mathrm{3}{x}} \\ $$

Question Number 28703    Answers: 0   Comments: 1

(1/((a^2 +x^2 )^(3/2) )) solve the integration

$$\frac{\mathrm{1}}{\left({a}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }\:\:\:{solve}\:{the}\:{integration} \\ $$

Question Number 28702    Answers: 0   Comments: 1

solve integration (1/(√((x−α)(β−x)))) .

$${solve}\:{integration}\:\:\frac{\mathrm{1}}{\sqrt{\left({x}−\alpha\right)\left(\beta−{x}\right)}}\:\:. \\ $$

Question Number 28701    Answers: 1   Comments: 2

integration (x^3 /(x^2 +x+1))

$${integration}\:\frac{{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} +{x}+\mathrm{1}} \\ $$

Question Number 28700    Answers: 0   Comments: 0

solve integration (√((sin(x−α))/(sin(x+α))))

$${solve}\:{integration}\:\sqrt{\frac{{sin}\left({x}−\alpha\right)}{{sin}\left({x}+\alpha\right)}} \\ $$

Question Number 28698    Answers: 0   Comments: 3

(∞/(negative number))=? ∞ or −∞ ?

$$\frac{\infty}{\mathrm{negative}\:\mathrm{number}}=? \\ $$$$\:\infty\:\:\:\:\:\:\:\:\:\:\mathrm{or}\:\:\:\:\:\:\:\:\:−\infty\:\:? \\ $$

Question Number 28695    Answers: 1   Comments: 0

∣a^→ +b^→ ∣=40,∣a^→ −b^→ ∣=20&∣a^→ ∣=10 then find∣b^→ ∣

$$\mid\overset{\rightarrow} {\mathrm{a}}+\overset{\rightarrow} {\mathrm{b}}\mid=\mathrm{40},\mid\overset{\rightarrow} {\mathrm{a}}−\overset{\rightarrow} {\mathrm{b}}\mid=\mathrm{20\&}\mid\overset{\rightarrow} {\mathrm{a}}\mid=\mathrm{10}\:\mathrm{then}\:\mathrm{find}\mid\overset{\rightarrow} {\mathrm{b}}\mid \\ $$

Question Number 28694    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ e^(−tx^2 ) cosx dx with t>0 .

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{tx}^{\mathrm{2}} } {cosx}\:{dx}\:\:{with}\:{t}>\mathrm{0}\:. \\ $$

Question Number 28690    Answers: 0   Comments: 5

Question Number 28687    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ e^(−( t^2 +(1/t^2 ))) dt.

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left(\:{t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)} {dt}. \\ $$

Question Number 28685    Answers: 0   Comments: 0

find the value of I=∫∫_D x^3 dxdy with D= {(x,y)∈R^2 /1≤x≤2 and x^2 −y^2 ≥1 }.

$${find}\:{the}\:{value}\:{of}\:\:{I}=\int\int_{{D}} \:{x}^{\mathrm{3}} {dxdy}\:\:\:{with} \\ $$$${D}=\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\mathrm{1}\leqslant{x}\leqslant\mathrm{2}\:{and}\:\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \:\:\geqslant\mathrm{1}\:\:\right\}. \\ $$

Question Number 28684    Answers: 0   Comments: 0

find sum of S(x)= Σ_(n=1) ^∞ (−1)^(n−1) (x^(2n+1) /(4n^2 −1)) .

$${find}\:\:{sum}\:{of}\:{S}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}\:. \\ $$

Question Number 28683    Answers: 0   Comments: 1

developp f(x)=e^(−αx) 2π periodic at Fourier serie with α>0.

$${developp}\:{f}\left({x}\right)={e}^{−\alpha{x}} \:\:\:\mathrm{2}\pi\:{periodic}\:{at}\:{Fourier}\:{serie}\:{with} \\ $$$$\alpha>\mathrm{0}. \\ $$

Question Number 28682    Answers: 0   Comments: 2

nature of the serie Σ_(n=0) ^∞ tan(((2n+1)/n^3 )) .

$${nature}\:{of}\:{the}\:{serie}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{tan}\left(\frac{\mathrm{2}{n}+\mathrm{1}}{{n}^{\mathrm{3}} }\right)\:. \\ $$

Question Number 28681    Answers: 0   Comments: 0

give a equivalent of w_n = Σ_(k=n+1) ^∞ (1/(k!)) .

$${give}\:{a}\:{equivalent}\:{of}\:\:{w}_{{n}} =\:\:\:\sum_{{k}={n}+\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{k}!}\:\:. \\ $$

Question Number 28680    Answers: 0   Comments: 0

find lim_(ξ→0) ∫_0 ^(π/2) (dx/(√(sin^2 x +ξcos^2 x))) .

$${find}\:\:{lim}_{\xi\rightarrow\mathrm{0}} \:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{dx}}{\sqrt{{sin}^{\mathrm{2}} {x}\:+\xi{cos}^{\mathrm{2}} {x}}}\:\:\:\:\:. \\ $$

  Pg 1806      Pg 1807      Pg 1808      Pg 1809      Pg 1810      Pg 1811      Pg 1812      Pg 1813      Pg 1814      Pg 1815   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com