Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1811

Question Number 18962    Answers: 1   Comments: 0

The number of solutions of the equation sin^5 θ + (1/(sin θ)) = (1/(cos θ)) + cos^5 θ where θ ∈ (0, (π/2)) , is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{sin}^{\mathrm{5}} \:\theta\:+\:\frac{\mathrm{1}}{\mathrm{sin}\:\theta}\:=\:\frac{\mathrm{1}}{\mathrm{cos}\:\theta}\:+\:\mathrm{cos}^{\mathrm{5}} \:\theta\:\mathrm{where} \\ $$$$\theta\:\in\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\right)\:,\:\mathrm{is} \\ $$

Question Number 18961    Answers: 1   Comments: 0

Find arg(z), z = i^i^i .

$$\mathrm{Find}\:\mathrm{arg}\left({z}\right),\:{z}\:=\:{i}^{{i}^{{i}} } . \\ $$

Question Number 18951    Answers: 0   Comments: 0

Question Number 18949    Answers: 1   Comments: 1

Find the number of numbers ≤ 10^8 which are neither perfect squares, nor perfect cubes, nor perfect fifth powers.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{numbers}\:\leqslant\:\mathrm{10}^{\mathrm{8}} \\ $$$$\mathrm{which}\:\mathrm{are}\:\mathrm{neither}\:\mathrm{perfect}\:\mathrm{squares},\:\mathrm{nor} \\ $$$$\mathrm{perfect}\:\mathrm{cubes},\:\mathrm{nor}\:\mathrm{perfect}\:\mathrm{fifth}\:\mathrm{powers}. \\ $$

Question Number 18945    Answers: 0   Comments: 1

A point ′A′ is randomly chosen in a square of side length 1 unit. Find the probability the distance from A to the centre of the square does not exceed x.

$$\mathrm{A}\:\mathrm{point}\:'\mathrm{A}'\:\mathrm{is}\:\mathrm{randomly}\:\mathrm{chosen}\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{square}\:\mathrm{of}\:\mathrm{side}\:\mathrm{length}\:\mathrm{1}\:\mathrm{unit}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{probability}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{from}\:\mathrm{A}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square}\:\mathrm{does}\:\mathrm{not}\:\mathrm{exceed}\:\mathrm{x}. \\ $$

Question Number 18924    Answers: 1   Comments: 0

A spring of force constant k is cut into two pieces such that one piece is twice as long as the other. Then the longer piece will have a force constant of

$$\mathrm{A}\:\mathrm{spring}\:\mathrm{of}\:\mathrm{force}\:\mathrm{constant}\:{k}\:\mathrm{is}\:\mathrm{cut}\:\mathrm{into} \\ $$$$\mathrm{two}\:\mathrm{pieces}\:\mathrm{such}\:\mathrm{that}\:\mathrm{one}\:\mathrm{piece}\:\mathrm{is}\:\mathrm{twice} \\ $$$$\mathrm{as}\:\mathrm{long}\:\mathrm{as}\:\mathrm{the}\:\mathrm{other}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{longer} \\ $$$$\mathrm{piece}\:\mathrm{will}\:\mathrm{have}\:\mathrm{a}\:\mathrm{force}\:\mathrm{constant}\:\mathrm{of} \\ $$

Question Number 18922    Answers: 0   Comments: 3

Consider a block sliding over a smooth inclined surface of inclination θ. Relating to Newton′s second law applied on the block, select the incorrect alternative. (1) ΣF_(y′) ≠ 0 (2) ΣF_y = 0 (3) ΣF_x = −mg sin θ (4) ΣF_(x′) < 0

$$\mathrm{Consider}\:\mathrm{a}\:\mathrm{block}\:\mathrm{sliding}\:\mathrm{over}\:\mathrm{a}\:\mathrm{smooth} \\ $$$$\mathrm{inclined}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{inclination}\:\theta.\:\mathrm{Relating} \\ $$$$\mathrm{to}\:\mathrm{Newton}'\mathrm{s}\:\mathrm{second}\:\mathrm{law}\:\mathrm{applied}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{block},\:\mathrm{select}\:\mathrm{the}\:\mathrm{incorrect}\:\mathrm{alternative}. \\ $$$$\left(\mathrm{1}\right)\:\Sigma{F}_{{y}'} \:\neq\:\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\Sigma{F}_{{y}} \:=\:\mathrm{0} \\ $$$$\left(\mathrm{3}\right)\:\Sigma{F}_{{x}} \:=\:−{mg}\:\mathrm{sin}\:\theta \\ $$$$\left(\mathrm{4}\right)\:\Sigma{F}_{{x}'} \:<\:\mathrm{0} \\ $$

Question Number 18918    Answers: 0   Comments: 17

A bird sits on a stretched telegraph wire. The additional tension produced in the wire is (1) Zero (2) Greater than weight of the bird (3) Less than the weight of the bird (4) Equal to the weight of the bird

$$\mathrm{A}\:\mathrm{bird}\:\mathrm{sits}\:\mathrm{on}\:\mathrm{a}\:\mathrm{stretched}\:\mathrm{telegraph} \\ $$$$\mathrm{wire}.\:\mathrm{The}\:\mathrm{additional}\:\mathrm{tension}\:\mathrm{produced} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{wire}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Zero} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Greater}\:\mathrm{than}\:\mathrm{weight}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bird} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Less}\:\mathrm{than}\:\mathrm{the}\:\mathrm{weight}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bird} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{weight}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bird} \\ $$

Question Number 18940    Answers: 0   Comments: 3

A light rope is passed over a pulley such that at its one end a block is attached, and on the other end a boy is climbing up with acceleration (g/2) relative to rope. Mass of the block is 30 kg and that of the boy is 40 kg. Find the tension and acceleration of the rope.

$$\mathrm{A}\:\mathrm{light}\:\mathrm{rope}\:\mathrm{is}\:\mathrm{passed}\:\mathrm{over}\:\mathrm{a}\:\mathrm{pulley}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{at}\:\mathrm{its}\:\mathrm{one}\:\mathrm{end}\:\mathrm{a}\:\mathrm{block}\:\mathrm{is}\:\mathrm{attached}, \\ $$$$\mathrm{and}\:\mathrm{on}\:\mathrm{the}\:\mathrm{other}\:\mathrm{end}\:\mathrm{a}\:\mathrm{boy}\:\mathrm{is}\:\mathrm{climbing} \\ $$$$\mathrm{up}\:\mathrm{with}\:\mathrm{acceleration}\:\frac{{g}}{\mathrm{2}}\:\mathrm{relative}\:\mathrm{to}\:\mathrm{rope}. \\ $$$$\mathrm{Mass}\:\mathrm{of}\:\mathrm{the}\:\mathrm{block}\:\mathrm{is}\:\mathrm{30}\:\mathrm{kg}\:\mathrm{and}\:\mathrm{that}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{boy}\:\mathrm{is}\:\mathrm{40}\:\mathrm{kg}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{tension}\:\mathrm{and} \\ $$$$\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rope}. \\ $$

Question Number 18916    Answers: 0   Comments: 0

x^2 −7x+12<mod(x−4)

$${x}^{\mathrm{2}} −\mathrm{7}{x}+\mathrm{12}<{mod}\left({x}−\mathrm{4}\right) \\ $$

Question Number 18909    Answers: 0   Comments: 1

What does a_ .b_ and a_ ×b_ means ? someone please explain it.

$${What}\:{does}\:\underset{} {{a}}.\underset{} {{b}}\:\:{and}\:\underset{} {{a}}×\underset{} {{b}}\:{means}\:? \\ $$$${someone}\:{please}\:{explain}\:{it}. \\ $$

Question Number 18908    Answers: 0   Comments: 5

Why Does ∣A^→ ×B^→ ∣=ABSinθ ?

$${Why}\:{Does} \\ $$$$\mid\overset{\rightarrow} {{A}}×\overset{\rightarrow} {{B}}\mid={ABSin}\theta\:? \\ $$

Question Number 18907    Answers: 0   Comments: 3

Why Does A^→ .B^→ =ABCosθ?

$${Why}\:{Does}\: \\ $$$$\overset{\rightarrow} {{A}}.\overset{\rightarrow} {{B}}={ABCos}\theta?\: \\ $$

Question Number 18906    Answers: 1   Comments: 0

calculate (dy/dx) where y=cos^(−1) ((a+b cosx)/(b+a cosx)) (b>a)

$$\mathrm{calculate}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:\:\:\mathrm{where}\: \\ $$$$\mathrm{y}=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{a}+\mathrm{b}\:\mathrm{cosx}}{\mathrm{b}+\mathrm{a}\:\mathrm{cosx}}\:\left(\mathrm{b}>\mathrm{a}\right) \\ $$

Question Number 18905    Answers: 0   Comments: 0

prove that the differentiation of(((√(1+x^2 ))−(√(1−x^2 )))/((√(1+x^2 ))+(√(1−x^2 )))) with respect to (√(1−x^4 )) is ((√(1−x^4 ))/x^6 )

$$\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{differentiation} \\ $$$$\mathrm{of}\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }+\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\:\:\mathrm{with}\:\mathrm{respect} \\ $$$$\mathrm{to}\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }\:\:\mathrm{is}\:\:\frac{\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }}{\mathrm{x}^{\mathrm{6}} } \\ $$

Question Number 18904    Answers: 1   Comments: 0

Solve the triangle in which a=((√3)+1), b=((√3)−1) and ∠C=60°.

$${Solve}\:{the}\:{triangle}\:{in}\:{which}\:{a}=\left(\sqrt{\mathrm{3}}+\mathrm{1}\right),\: \\ $$$${b}=\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)\:{and}\:\angle{C}=\mathrm{60}°. \\ $$$$ \\ $$

Question Number 18893    Answers: 1   Comments: 0

Find all values of x, y and k for which the system of equations sin x cos 2y = k^4 − 2k^2 + 2 cos x sin 2y = k + 1 has a solution.

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{values}\:\mathrm{of}\:{x},\:{y}\:\mathrm{and}\:{k}\:\mathrm{for}\:\mathrm{which} \\ $$$$\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations} \\ $$$$\mathrm{sin}\:{x}\:\mathrm{cos}\:\mathrm{2}{y}\:=\:{k}^{\mathrm{4}} \:−\:\mathrm{2}{k}^{\mathrm{2}} \:+\:\mathrm{2} \\ $$$$\mathrm{cos}\:{x}\:\mathrm{sin}\:\mathrm{2}{y}\:=\:{k}\:+\:\mathrm{1} \\ $$$$\mathrm{has}\:\mathrm{a}\:\mathrm{solution}. \\ $$

Question Number 18892    Answers: 1   Comments: 0

If the equation sin6x + cos4x = −2 have a family of nonnegative solutions x_k ′s, where 0 ≤ x_1 < x_2 < x_3 < .... < x_k < x_(k+1) ....., then the value of (1/π)Σ_(k=1) ^(1000) ∣x_(k+1) − x_k ∣ is

$$\mathrm{If}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{sin6}{x}\:+\:\mathrm{cos4}{x}\:=\:−\mathrm{2}\:\mathrm{have} \\ $$$$\mathrm{a}\:\mathrm{family}\:\mathrm{of}\:\mathrm{nonnegative}\:\mathrm{solutions}\:{x}_{{k}} '\mathrm{s}, \\ $$$$\mathrm{where}\:\mathrm{0}\:\leqslant\:{x}_{\mathrm{1}} \:<\:{x}_{\mathrm{2}} \:<\:{x}_{\mathrm{3}} \:<\:....\:<\:{x}_{{k}} \:<\:{x}_{{k}+\mathrm{1}} \\ $$$$.....,\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{1}}{\pi}\underset{{k}=\mathrm{1}} {\overset{\mathrm{1000}} {\sum}}\mid{x}_{{k}+\mathrm{1}} \:−\:{x}_{{k}} \mid\:\mathrm{is} \\ $$

Question Number 18891    Answers: 2   Comments: 0

If angles A and B satisfy (√2) cos A = cos B + cos^3 B and (√2) sin A = sin B − sin^3 B, then the value of 1620sin^2 (A − B) is

$$\mathrm{If}\:\mathrm{angles}\:{A}\:\mathrm{and}\:{B}\:\mathrm{satisfy}\:\sqrt{\mathrm{2}}\:\mathrm{cos}\:{A}\:= \\ $$$$\mathrm{cos}\:{B}\:+\:\mathrm{cos}^{\mathrm{3}} \:{B}\:\mathrm{and}\:\sqrt{\mathrm{2}}\:\mathrm{sin}\:{A}\:=\:\mathrm{sin}\:{B}\:− \\ $$$$\mathrm{sin}^{\mathrm{3}} \:{B},\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{1620sin}^{\mathrm{2}} \left({A}\:−\:{B}\right) \\ $$$$\mathrm{is} \\ $$

Question Number 18889    Answers: 0   Comments: 2

∫ ((d((√(3x))))/(√((√x) + 7)))

$$\int\:\frac{{d}\left(\sqrt{\mathrm{3}{x}}\right)}{\sqrt{\sqrt{{x}}\:+\:\mathrm{7}}} \\ $$

Question Number 18872    Answers: 2   Comments: 0

Question Number 18871    Answers: 0   Comments: 1

Question Number 18866    Answers: 1   Comments: 0

Question Number 18864    Answers: 2   Comments: 1

Question Number 18859    Answers: 1   Comments: 0

If f(x+2)=f(x)+7 and f(1)=2; f(2)=5, then the ratio of f(150) to f(75) is

$$\mathrm{If}\:\mathrm{f}\left(\mathrm{x}+\mathrm{2}\right)=\mathrm{f}\left(\mathrm{x}\right)+\mathrm{7}\:\mathrm{and}\:\mathrm{f}\left(\mathrm{1}\right)=\mathrm{2};\:\mathrm{f}\left(\mathrm{2}\right)=\mathrm{5}, \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{150}\right)\:\mathrm{to}\:\mathrm{f}\left(\mathrm{75}\right)\:\mathrm{is} \\ $$

Question Number 18854    Answers: 0   Comments: 0

lim_(x→0) sin x_x =?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}sin}\:\underset{\mathrm{x}} {\mathrm{x}}\:\:\:\:=? \\ $$

  Pg 1806      Pg 1807      Pg 1808      Pg 1809      Pg 1810      Pg 1811      Pg 1812      Pg 1813      Pg 1814      Pg 1815   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com