Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1811

Question Number 28368    Answers: 0   Comments: 0

P is apolynomial from C_n [x] having n roots (x_i )_(1≤i≤n ) and x_i # x_j for i#j 1) prove that Σ_(i=1) ^n (1/(p^′ (x_i ))) =0 2) find Σ_(i=1) ^n (x_i ^k /(p^′ (x_i ))) with k∈[[0,n−1]] .

$${P}\:{is}\:{apolynomial}\:{from}\:{C}_{{n}} \left[{x}\right]\:{having}\:{n}\:{roots} \\ $$$$\left({x}_{{i}} \right)_{\mathrm{1}\leqslant{i}\leqslant{n}\:} \:\:\:\:{and}\:{x}_{{i}} #\:{x}_{{j}} \:{for}\:{i}#{j} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\:\sum_{{i}=\mathrm{1}} ^{{n}} \:\:\:\frac{\mathrm{1}}{{p}^{'} \left({x}_{{i}} \right)}\:\:=\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\:\:\:\sum_{{i}=\mathrm{1}} ^{{n}} \:\:\:\frac{{x}_{{i}} ^{{k}} }{{p}^{'} \left({x}_{{i}} \right)}\:\:\:\:{with}\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right]\:\:. \\ $$

Question Number 28367    Answers: 0   Comments: 0

find F∈R(x) wich verify F(x+1) −F(x)= ((x+3)/(x(x−1)(x+1))).

$${find}\:{F}\in{R}\left({x}\right)\:\:{wich}\:{verify}\:\:{F}\left({x}+\mathrm{1}\right)\:−{F}\left({x}\right)=\:\frac{{x}+\mathrm{3}}{{x}\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)}. \\ $$

Question Number 28366    Answers: 0   Comments: 0

let give P(x)= α(x−x_1 )^m_1 (x−x_2 )^m_2 .....(x−x_n )^m_n give the decomposition of F(x)= ((d(P))/P) .d mean derivative

$${let}\:{give}\:{P}\left({x}\right)=\:\alpha\left({x}−{x}_{\mathrm{1}} \right)^{{m}_{\mathrm{1}} } \left({x}−{x}_{\mathrm{2}} \right)^{{m}_{\mathrm{2}} } .....\left({x}−{x}_{{n}} \right)^{{m}_{{n}} } \\ $$$${give}\:{the}\:{decomposition}\:{of}\:{F}\left({x}\right)=\:\frac{{d}\left({P}\right)}{{P}}\:.{d}\:{mean}\:{derivative} \\ $$

Question Number 28364    Answers: 0   Comments: 0

let give F(x) = (1/(x^2 +1)) prove that ∃ P_n ∈ Z_n [x] / F^((n)) (x)= ((P_n (x))/((1+x^2 )^n )) find a relation of recurence between the P_n .prove that all roots of P_n are reals and smples.

$${let}\:{give}\:{F}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\:{prove}\:{that}\:\exists\:{P}_{{n}} \in\:{Z}_{{n}} \left[{x}\right]\:/ \\ $$$${F}^{\left({n}\right)} \left({x}\right)=\:\:\frac{{P}_{{n}} \left({x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:\:\:{find}\:{a}\:{relation}\:{of}\:{recurence}\:{between}\: \\ $$$${the}\:\:{P}_{{n}} \:.{prove}\:{that}\:{all}\:{roots}\:{of}\:{P}_{{n}} \:{are}\:{reals}\:{and}\:{smples}. \\ $$

Question Number 28363    Answers: 1   Comments: 0

simlify the sum S= Σ_(k=0) ^(n−1) ((x+ e^(i2kπ) )/(x −e^(i2kπ) )) .

$${simlify}\:{the}\:{sum}\:\:\:{S}=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{{x}+\:{e}^{{i}\mathrm{2}{k}\pi} }{{x}\:−{e}^{{i}\mathrm{2}{k}\pi} }\:\:. \\ $$

Question Number 28359    Answers: 0   Comments: 1

Question Number 28349    Answers: 1   Comments: 1

Question Number 28341    Answers: 1   Comments: 4

Find lim_(x→0) ((5x−tan (5x))/x^3 )

$${Find}\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{5}{x}−\mathrm{tan}\:\left(\mathrm{5}{x}\right)}{{x}^{\mathrm{3}} } \\ $$

Question Number 28339    Answers: 1   Comments: 0

Question Number 28327    Answers: 1   Comments: 0

Given that ((a^(n+1) +b^(n+1) )/(a^n +b^n )) is AM between a and b ,where a≠b ∧ a,b≠0; find out the value of n.

$$\mathrm{Given}\:\mathrm{that}\:\frac{{a}^{{n}+\mathrm{1}} +{b}^{{n}+\mathrm{1}} }{{a}^{{n}} +{b}^{{n}} }\:\mathrm{is}\:\mathrm{AM}\:\mathrm{between}\:{a} \\ $$$$\mathrm{and}\:{b}\:,\mathrm{where}\:{a}\neq{b}\:\wedge\:{a},{b}\neq\mathrm{0};\:\mathrm{find}\:\mathrm{out}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{n}. \\ $$

Question Number 28320    Answers: 0   Comments: 3

If the arithmetic mean of a and b is ((a^(n+1) +b^(n+1) )/2), show that n=0

$${If}\:{the}\:{arithmetic}\:{mean}\:{of}\:{a}\:{and} \\ $$$${b}\:{is}\:\frac{{a}^{{n}+\mathrm{1}} +{b}^{{n}+\mathrm{1}} }{\mathrm{2}},\:{show}\:{that}\:{n}=\mathrm{0} \\ $$

Question Number 28319    Answers: 2   Comments: 0

If the roots of x^2 +px+q=0, q≠0 are α and β.Find the roots of qx^2 +(2q−p^2 )x+q=0 in terms of α and β.

$${If}\:{the}\:{roots}\:{of}\:{x}^{\mathrm{2}} +{px}+{q}=\mathrm{0},\:{q}\neq\mathrm{0} \\ $$$${are}\:\alpha\:{and}\:\beta.{Find}\:{the}\:{roots}\:{of} \\ $$$${qx}^{\mathrm{2}} +\left(\mathrm{2}{q}−{p}^{\mathrm{2}} \right){x}+{q}=\mathrm{0}\:{in}\:{terms}\:{of} \\ $$$$\alpha\:{and}\:\beta. \\ $$

Question Number 28312    Answers: 1   Comments: 0

let give P_n (x)=(x+1)^(2n) +(x+2)^n −1 and Q(x)= x^2 +3x +2 find R(x) /P_n (x)=R(x) Q(x) .

$${let}\:{give}\:\:{P}_{{n}} \left({x}\right)=\left({x}+\mathrm{1}\right)^{\mathrm{2}{n}} \:+\left({x}+\mathrm{2}\right)^{{n}} −\mathrm{1}\:{and} \\ $$$${Q}\left({x}\right)=\:{x}^{\mathrm{2}} \:+\mathrm{3}{x}\:+\mathrm{2}\:\:{find}\:{R}\left({x}\right)\:/{P}_{{n}} \left({x}\right)={R}\left({x}\right)\:{Q}\left({x}\right)\:. \\ $$

Question Number 28311    Answers: 0   Comments: 0

let give P_n (x)= Σ_(k=0) ^(2n) (1+(1/2) +...+(1/(k+1)))x^k and Q_n (x)= 1+(x/2)+(x^2 /3) +...(x^n /(n+1)) .prove that Q_(n ) divide P_n .

$${let}\:{give}\:{P}_{{n}} \left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:+...+\frac{\mathrm{1}}{{k}+\mathrm{1}}\right){x}^{{k}} \:\:{and} \\ $$$${Q}_{{n}} \left({x}\right)=\:\mathrm{1}+\frac{{x}}{\mathrm{2}}+\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\:+...\frac{{x}^{{n}} }{{n}+\mathrm{1}}\:\:.{prove}\:{that}\:{Q}_{{n}\:} \:{divide}\:{P}_{{n}} . \\ $$

Question Number 28305    Answers: 0   Comments: 3

if y=sin^(−1) x^2 +cos^(−1) x^2 find dy/dx

$${if}\:{y}=\mathrm{sin}^{−\mathrm{1}} {x}^{\mathrm{2}} +\mathrm{cos}^{−\mathrm{1}} {x}^{\mathrm{2}} \\ $$$${find}\:{dy}/{dx} \\ $$

Question Number 28304    Answers: 1   Comments: 0

if y=(sin^(−1) x)^2 +(cos^(−1) x)^2 find dy/dx

$${if}\:{y}=\left(\mathrm{sin}^{−\mathrm{1}} {x}\right)^{\mathrm{2}} +\left(\mathrm{cos}^{−\mathrm{1}} {x}\right)^{\mathrm{2}} \\ $$$$ \\ $$$${find}\:{dy}/{dx} \\ $$

Question Number 28303    Answers: 1   Comments: 0

If one line of the equation : ax^3 +bx^2 y+cxy^2 +dy^3 =0 bisects the angle between the the other two then prove (3a+c)^2 (bc+2cd−3ad)= (b+3d)^2 (bc+2ab−3ad) .

$${If}\:{one}\:{line}\:{of}\:{the}\:{equation}\:: \\ $$$$\boldsymbol{{ax}}^{\mathrm{3}} +\boldsymbol{{bx}}^{\mathrm{2}} \boldsymbol{{y}}+\boldsymbol{{cxy}}^{\mathrm{2}} +\boldsymbol{{dy}}^{\mathrm{3}} =\mathrm{0} \\ $$$${bisects}\:{the}\:{angle}\:{between}\:{the} \\ $$$${the}\:{other}\:{two}\:{then}\:{prove} \\ $$$$\left(\mathrm{3}{a}+{c}\right)^{\mathrm{2}} \left({bc}+\mathrm{2}{cd}−\mathrm{3}{ad}\right)= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left({b}+\mathrm{3}{d}\right)^{\mathrm{2}} \left({bc}+\mathrm{2}{ab}−\mathrm{3}{ad}\right)\:. \\ $$

Question Number 28302    Answers: 0   Comments: 1

Question Number 28313    Answers: 0   Comments: 0

let give P_n (x)= 1−x^2^(n+1) and Q_n (x)= Π_(k=0) ^n (1+x^2^k ) prove that Q_(n ) divide P_n .

$${let}\:{give}\:\:{P}_{{n}} \left({x}\right)=\:\mathrm{1}−{x}^{\mathrm{2}^{{n}+\mathrm{1}} } \:\:\:{and}\:\:{Q}_{{n}} \left({x}\right)=\:\prod_{{k}=\mathrm{0}} ^{{n}} \left(\mathrm{1}+{x}^{\mathrm{2}^{{k}} } \right) \\ $$$${prove}\:{that}\:{Q}_{{n}\:} \:{divide}\:{P}_{{n}} . \\ $$

Question Number 28293    Answers: 0   Comments: 0

Question Number 28289    Answers: 0   Comments: 0

find the loss amt when cost price and % of loss given

$${find}\:{the}\:{loss}\:{amt}\:{when}\:{cost}\:{price} \\ $$$${and}\:\%\:{of}\:{loss}\:{given} \\ $$

Question Number 28288    Answers: 2   Comments: 0

Question Number 28285    Answers: 0   Comments: 1

Question Number 28280    Answers: 1   Comments: 4

Find dy/dx x^(2/3) (6−x)^(1/(3 )) to it simplest form

$${Find}\:{dy}/{dx} \\ $$$${x}^{\frac{\mathrm{2}}{\mathrm{3}}} \left(\mathrm{6}−{x}\right)^{\frac{\mathrm{1}}{\mathrm{3}\:}} \:{to}\:{it}\:{simplest}\:{form} \\ $$

Question Number 28278    Answers: 2   Comments: 1

Question Number 28275    Answers: 0   Comments: 2

Find area of the region [y]=[x] for x∈[2, 5] . [x] is greatest integer less than or equal to x .

$${Find}\:{area}\:{of}\:{the}\:{region} \\ $$$$\left[{y}\right]=\left[{x}\right]\:\:{for}\:\:{x}\in\left[\mathrm{2},\:\mathrm{5}\right]\:. \\ $$$$\left[{x}\right]\:{is}\:{greatest}\:{integer}\:{less}\:{than}\:{or} \\ $$$${equal}\:{to}\:{x}\:. \\ $$

  Pg 1806      Pg 1807      Pg 1808      Pg 1809      Pg 1810      Pg 1811      Pg 1812      Pg 1813      Pg 1814      Pg 1815   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com