Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 181
Question Number 202497 Answers: 3 Comments: 0
$$\mathrm{If}\:\mathrm{the}\:\mathrm{difference}\:\mathrm{of}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of} \\ $$$${x}^{\mathrm{2}} \:+\:\mathrm{2}{px}\:+\:{q}\:=\:\mathrm{0}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\: \\ $$$$\mathrm{difference}\:\mathrm{of}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\: \\ $$$${x}^{\mathrm{2}} \:+\:\mathrm{2}{qx}\:+\:{p}\:=\:\mathrm{0}\:\left[{p}\:\neq\:{q}\right]\:\mathrm{then}\:\mathrm{show} \\ $$$$\mathrm{that}\:{p}\:+\:{q}\:+\:\mathrm{1}\:=\:\mathrm{0}. \\ $$
Question Number 202490 Answers: 2 Comments: 2
Question Number 202485 Answers: 0 Comments: 3
Question Number 202477 Answers: 3 Comments: 0
$$\mathrm{If}\:{x}\:=\:\frac{\sqrt{{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} }\:+\:\sqrt{{a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} }}{\:\sqrt{{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} }\:−\:\sqrt{{a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} }}\:\mathrm{then}\:\mathrm{show}\:\mathrm{that} \\ $$$${b}^{\mathrm{2}} {x}^{\mathrm{2}} \:−\:\mathrm{2}{a}^{\mathrm{2}} {x}\:+\:{b}^{\mathrm{2}} \:=\:\mathrm{0}. \\ $$
Question Number 202473 Answers: 0 Comments: 0
$$\mathrm{Find}: \\ $$$$\mathrm{1}.\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{2}^{\boldsymbol{\mathrm{n}}} \:\centerdot\:\mathrm{n}!}{\left(\mathrm{2n}\right)!}\:\:\:\:\:\:\:\:\:\:\mathrm{2}.\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left(\mathrm{x}\:+\:\mathrm{5}\right)^{\boldsymbol{\mathrm{n}}} }{\mathrm{3}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \:\centerdot\:\mathrm{n}\:\centerdot\:\mathrm{ln}\left(\mathrm{n}\right)} \\ $$
Question Number 202468 Answers: 1 Comments: 0
$$\mathrm{Find}: \\ $$$$\mathrm{1}.\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\:\infty} {\sum}}\:\frac{\mathrm{16}}{\mathrm{16n}^{\mathrm{2}} \:−\:\mathrm{8n}\:−\:\mathrm{3}}\:=\:?\:\:\:\:\:\mathrm{2}.\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\:\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} }{\mathrm{2n}^{\mathrm{3}} }\:=\:? \\ $$
Question Number 202466 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{x}\sqrt{\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)}}{\mathrm{1}+{e}^{{x}−\mathrm{3}} } \\ $$
Question Number 202464 Answers: 0 Comments: 0
Question Number 202462 Answers: 1 Comments: 0
Question Number 202459 Answers: 3 Comments: 0
$$\mathrm{If}\:\mathrm{the}\:\mathrm{difference}\:\mathrm{of}\:\mathrm{two}\:\mathrm{roots}\:\mathrm{of}\: \\ $$$${x}^{\mathrm{2}} \:−\:{lx}\:+\:{m}\:=\:\mathrm{0}\:\mathrm{is}\:\mathrm{1}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$${l}^{\mathrm{2}} \:+\:\mathrm{4}{m}^{\mathrm{2}} \:=\:\left(\mathrm{1}\:+\:\mathrm{2}{m}\right)^{\mathrm{2}} \:. \\ $$
Question Number 202449 Answers: 0 Comments: 0
Question Number 202448 Answers: 2 Comments: 0
Question Number 202447 Answers: 2 Comments: 0
$$\mathrm{rationnalise}\:\mathrm{le}\:\mathrm{denominateur}\:\mathrm{de}\: \\ $$$$\mathrm{x}\:=\:\frac{\sqrt[{\mathrm{3}\:}]{\mathrm{2}}−\mathrm{1}}{\mathrm{1}−^{\mathrm{3}} \sqrt{\mathrm{2}}+^{\mathrm{3}} \sqrt{\mathrm{4}}} \\ $$
Question Number 202436 Answers: 2 Comments: 0
$$\mathrm{If}\:\alpha,\:\beta\:\mathrm{and}\:\gamma\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\: \\ $$$${ax}^{\mathrm{3}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{frame}\:\mathrm{an}\:\mathrm{equation} \\ $$$$\mathrm{whose}\:\mathrm{roots}\:\mathrm{are}\:\alpha^{\mathrm{2}} ,\:\beta^{\mathrm{2}} ,\:\gamma^{\mathrm{2}} \:.\: \\ $$
Question Number 202419 Answers: 0 Comments: 0
$$\mathrm{Hard}\:\mathrm{integral}:\:\mathrm{Q202393} \\ $$
Question Number 202418 Answers: 1 Comments: 0
$$\mathrm{Hard}\:\mathrm{integral} \\ $$$$\int\int\int\int\int\int\int\int\int\begin{vmatrix}{{a}}&{{b}}&{{c}}\\{{f}}&{{g}}&{{h}}\\{{j}}&{{k}}&{{l}}\end{vmatrix}{dl}\:{dk}\:{dj}\:{dh}\:{dg}\:{df}\:{dc}\:{db}\:{da}= \\ $$
Question Number 202415 Answers: 2 Comments: 0
$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\int{g}'\left({x}\right){f}'\left({g}\left({x}\right)\right){dx}\:\mathrm{is}... \\ $$
Question Number 202408 Answers: 0 Comments: 0
Question Number 202406 Answers: 2 Comments: 0
Question Number 202400 Answers: 2 Comments: 1
$$\mathrm{Solve}\:\mathrm{for}\:{a},\:{b}\:\mathrm{and}\:{c} \\ $$$$\frac{\mathrm{1}}{{a}}\:+\:\frac{\mathrm{1}}{{b}\:+\:{c}}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{{b}}\:+\:\frac{\mathrm{1}}{{c}\:+\:{a}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\: \\ $$$$\frac{\mathrm{1}}{{c}}\:+\:\frac{\mathrm{1}}{{a}\:+\:{b}}\:=\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Question Number 202395 Answers: 0 Comments: 0
Question Number 202393 Answers: 2 Comments: 0
Question Number 202392 Answers: 2 Comments: 11
$$\mathrm{If}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{ax}^{\mathrm{2}} \:+\:{bx}\:+\:{b}\:=\:\mathrm{0} \\ $$$$\mathrm{is}\:{p}\::\:{q}\:\mathrm{then}\:\mathrm{show}\:\mathrm{that} \\ $$$$\sqrt{\frac{{p}}{{q}}}\:+\:\sqrt{\frac{{q}}{{p}}}\:+\:\sqrt{\frac{{b}}{{a}}}\:=\:\mathrm{0}. \\ $$
Question Number 202390 Answers: 0 Comments: 0
Question Number 202388 Answers: 1 Comments: 0
$$\:\:\boldsymbol{{P}}\:\boldsymbol{{rove}}\:\boldsymbol{{that}}:\:\:\:\:\int\:\frac{\boldsymbol{{dx}}}{\boldsymbol{{b}}^{\mathrm{4}} +\mathrm{2}\boldsymbol{{ax}}^{\mathrm{2}} +\boldsymbol{{c}}}=\frac{\boldsymbol{{tan}}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{2}}\sqrt{\boldsymbol{{a}}}\boldsymbol{{x}}}{\:\sqrt{\boldsymbol{{c}}+\boldsymbol{{b}}^{\mathrm{4}} }}\right)}{\:\sqrt{\mathrm{2}}\sqrt{\boldsymbol{{a}}}\sqrt{\boldsymbol{{c}}+\boldsymbol{{b}}^{\mathrm{4}} }}+\boldsymbol{{C}} \\ $$$$\boldsymbol{{if}}\:\:\boldsymbol{{a}}\centerdot\left(\boldsymbol{{c}}+\boldsymbol{{b}}^{\mathrm{4}} \right)>\mathrm{0} \\ $$$$ \\ $$
Question Number 202383 Answers: 2 Comments: 0
$$\mathrm{Show}\:\mathrm{that}\:\frac{{a}\sqrt{{b}}\:−\:{b}\sqrt{{a}}}{{a}\sqrt{{b}}\:+\:{b}\sqrt{{a}}}\:=\:\frac{\mathrm{1}}{{a}\:−\:{b}}\left({a}\:+\:{b}\:−\:\mathrm{2}\sqrt{{ab}}\right). \\ $$
Pg 176 Pg 177 Pg 178 Pg 179 Pg 180 Pg 181 Pg 182 Pg 183 Pg 184 Pg 185
Terms of Service
Privacy Policy
Contact: info@tinkutara.com