Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1809

Question Number 22080    Answers: 0   Comments: 1

Given any positive integer n show that there are two positive rational numbers a and b, a ≠ b, which are not integers and which are such that a − b, a^2 − b^2 , a^3 − b^3 , ....., a^n − b^n are all integers.

$$\mathrm{Given}\:\mathrm{any}\:\mathrm{positive}\:\mathrm{integer}\:{n}\:\mathrm{show} \\ $$$$\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{two}\:\mathrm{positive}\:\mathrm{rational} \\ $$$$\mathrm{numbers}\:{a}\:\mathrm{and}\:{b},\:{a}\:\neq\:{b},\:\mathrm{which}\:\mathrm{are}\:\mathrm{not} \\ $$$$\mathrm{integers}\:\mathrm{and}\:\mathrm{which}\:\mathrm{are}\:\mathrm{such}\:\mathrm{that}\:{a}\:−\:{b}, \\ $$$${a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} ,\:{a}^{\mathrm{3}} \:−\:{b}^{\mathrm{3}} ,\:.....,\:{a}^{{n}} \:−\:{b}^{{n}} \:\mathrm{are}\:\mathrm{all} \\ $$$$\mathrm{integers}. \\ $$

Question Number 22079    Answers: 0   Comments: 1

Let ABC be a triangle and h_a the altitude through A. Prove that (b + c)^2 ≥ a^2 + 4h_a ^2 . (As usual a, b, c denote the sides BC, CA, AB respectively.)

$$\mathrm{Let}\:{ABC}\:\mathrm{be}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{and}\:{h}_{{a}} \:\mathrm{the} \\ $$$$\mathrm{altitude}\:\mathrm{through}\:{A}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\left({b}\:+\:{c}\right)^{\mathrm{2}} \:\geqslant\:{a}^{\mathrm{2}} \:+\:\mathrm{4}{h}_{{a}} ^{\mathrm{2}} . \\ $$$$\left(\mathrm{As}\:\mathrm{usual}\:{a},\:{b},\:{c}\:\mathrm{denote}\:\mathrm{the}\:\mathrm{sides}\:{BC},\right. \\ $$$$\left.{CA},\:{AB}\:\mathrm{respectively}.\right) \\ $$

Question Number 22076    Answers: 0   Comments: 3

find approximately and quickly without calculator ((54329)/(2467)) .

$${find}\:{approximately}\:{and}\:{quickly} \\ $$$${without}\:{calculator}\:\frac{\mathrm{54329}}{\mathrm{2467}}\:. \\ $$

Question Number 22161    Answers: 0   Comments: 1

The students were asked whether they had dictionary(D) or thesau rus(T) in their room.the results showed that 650 students had dict ionary,150 did not had dictionary, 175 had a thesaurus,and 50 had neither a dictionary nor a thesaur us,fimd the number of student who (i)live in domitory ( ii)have both dictionary and thesaurus (iii)have only thesaurus

$${The}\:{students}\:{were}\:{asked}\:{whether} \\ $$$${they}\:{had}\:{dictionary}\left({D}\right)\:{or}\:{thesau} \\ $$$${rus}\left({T}\right)\:{in}\:{their}\:{room}.{the}\:{results}\: \\ $$$${showed}\:{that}\:\mathrm{650}\:{students}\:{had}\:{dict} \\ $$$${ionary},\mathrm{150}\:{did}\:{not}\:{had}\:{dictionary}, \\ $$$$\mathrm{175}\:{had}\:{a}\:{thesaurus},{and}\:\mathrm{50}\:{had} \\ $$$${neither}\:{a}\:{dictionary}\:{nor}\:{a}\:{thesaur} \\ $$$${us},{fimd}\:{the}\:{number}\:{of}\:{student}\:{who} \\ $$$$\:\:\left({i}\right){live}\:{in}\:{domitory} \\ $$$$\:\:\:\left(\:{ii}\right){have}\:{both}\:{dictionary}\:{and}\:{thesaurus} \\ $$$$\:\:\left({iii}\right){have}\:{only}\:{thesaurus} \\ $$$$ \\ $$

Question Number 22071    Answers: 1   Comments: 4

STATEMENT-1 : If an object is at rest then there should not be any friction on it. STATEMENT-2 : If an object is moving then the friction acting on it has to be kinetic. STATEMENT-3 : If an object is at rest then kinetic friction cannot act on it.

$$\mathrm{STATEMENT}-\mathrm{1}\::\:\mathrm{If}\:\mathrm{an}\:\mathrm{object}\:\mathrm{is}\:\mathrm{at} \\ $$$$\mathrm{rest}\:\mathrm{then}\:\mathrm{there}\:\mathrm{should}\:\mathrm{not}\:\mathrm{be}\:\mathrm{any}\:\mathrm{friction} \\ $$$$\mathrm{on}\:\mathrm{it}. \\ $$$$\mathrm{STATEMENT}-\mathrm{2}\::\:\mathrm{If}\:\mathrm{an}\:\mathrm{object}\:\mathrm{is}\:\mathrm{moving} \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{friction}\:\mathrm{acting}\:\mathrm{on}\:\mathrm{it}\:\mathrm{has}\:\mathrm{to}\:\mathrm{be} \\ $$$$\mathrm{kinetic}. \\ $$$$\mathrm{STATEMENT}-\mathrm{3}\::\:\mathrm{If}\:\mathrm{an}\:\mathrm{object}\:\mathrm{is}\:\mathrm{at}\:\mathrm{rest} \\ $$$$\mathrm{then}\:\mathrm{kinetic}\:\mathrm{friction}\:\mathrm{cannot}\:\mathrm{act}\:\mathrm{on}\:\mathrm{it}. \\ $$

Question Number 26924    Answers: 1   Comments: 0

Question Number 22062    Answers: 1   Comments: 1

Question Number 22061    Answers: 1   Comments: 0

If 9x^2 +6xy+4y^2 is a factor of 27x^3 −8y^3 . find the other factor.

$$\mathrm{If}\:\mathrm{9x}^{\mathrm{2}} +\mathrm{6xy}+\mathrm{4y}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{factor}\:\mathrm{of} \\ $$$$\mathrm{27x}^{\mathrm{3}} −\mathrm{8y}^{\mathrm{3}} .\:\mathrm{find}\:\mathrm{the}\:\mathrm{other}\:\mathrm{factor}. \\ $$

Question Number 22059    Answers: 1   Comments: 0

A flywheel whose diameter is 1.5m decrease uniformly from 240rad/min until it came to rest 10s. Find the number of revolution made.

$$\mathrm{A}\:\mathrm{flywheel}\:\mathrm{whose}\:\mathrm{diameter}\:\mathrm{is}\:\mathrm{1}.\mathrm{5m}\:\mathrm{decrease}\:\mathrm{uniformly}\:\mathrm{from}\:\mathrm{240rad}/\mathrm{min} \\ $$$$\mathrm{until}\:\mathrm{it}\:\mathrm{came}\:\mathrm{to}\:\mathrm{rest}\:\mathrm{10s}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{revolution}\:\mathrm{made}. \\ $$

Question Number 22058    Answers: 1   Comments: 0

Two balls of mass 500g and 750g moving with 15m/s and 10m/s towards each other collides. Find the velocities of the ball after collision, if the coefficient of restitution is 0.8

$$\mathrm{Two}\:\mathrm{balls}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{500g}\:\mathrm{and}\:\mathrm{750g}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{15m}/\mathrm{s}\:\mathrm{and} \\ $$$$\mathrm{10m}/\mathrm{s}\:\mathrm{towards}\:\mathrm{each}\:\mathrm{other}\:\mathrm{collides}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{velocities}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{after} \\ $$$$\mathrm{collision},\:\mathrm{if}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{restitution}\:\mathrm{is}\:\mathrm{0}.\mathrm{8} \\ $$

Question Number 22057    Answers: 0   Comments: 0

∫f(x)dx=((d/dx))^2 f(x)=???

$$\int{f}\left({x}\right){dx}=\left(\frac{{d}}{{dx}}\right)^{\mathrm{2}} \\ $$$${f}\left({x}\right)=??? \\ $$

Question Number 22055    Answers: 0   Comments: 1

Question Number 22052    Answers: 0   Comments: 2

A hockey player is moving northward and suddenly turns westward with the same speed to avoid an opponent. The force that acts on the player is (a) frictional force along westward (b) muscle force along southward (c) frictional force along south-west (d) muscle force along south-west

$$\mathrm{A}\:\mathrm{hockey}\:\mathrm{player}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{northward} \\ $$$$\mathrm{and}\:\mathrm{suddenly}\:\mathrm{turns}\:\mathrm{westward}\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{speed}\:\mathrm{to}\:\mathrm{avoid}\:\mathrm{an}\:\mathrm{opponent}. \\ $$$$\mathrm{The}\:\mathrm{force}\:\mathrm{that}\:\mathrm{acts}\:\mathrm{on}\:\mathrm{the}\:\mathrm{player}\:\mathrm{is} \\ $$$$\left({a}\right)\:\mathrm{frictional}\:\mathrm{force}\:\mathrm{along}\:\mathrm{westward} \\ $$$$\left({b}\right)\:\mathrm{muscle}\:\mathrm{force}\:\mathrm{along}\:\mathrm{southward} \\ $$$$\left({c}\right)\:\mathrm{frictional}\:\mathrm{force}\:\mathrm{along}\:\mathrm{south}-\mathrm{west} \\ $$$$\left({d}\right)\:\mathrm{muscle}\:\mathrm{force}\:\mathrm{along}\:\mathrm{south}-\mathrm{west} \\ $$

Question Number 22047    Answers: 2   Comments: 1

If x > 0 and the 4^(th) term in the expansion of (2 + (3/8)x)^(10) has maximum value then find the range of x.

$$\mathrm{If}\:{x}\:>\:\mathrm{0}\:\mathrm{and}\:\mathrm{the}\:\mathrm{4}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion} \\ $$$$\mathrm{of}\:\left(\mathrm{2}\:+\:\frac{\mathrm{3}}{\mathrm{8}}{x}\right)^{\mathrm{10}} \:\mathrm{has}\:\mathrm{maximum}\:\mathrm{value} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{x}. \\ $$

Question Number 22050    Answers: 0   Comments: 0

Calculate the energy emitted when electrons of 1 g atom of hydrogen undergo transition giving the spectral line of lowest energy in the visible region of its atomic spectrum (R_H = 1.1 × 10^7 m^(−1) , c = 3 × 10^8 ms^(−1) , h = 6.62 × 10^(−34) Js)

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{energy}\:\mathrm{emitted}\:\mathrm{when} \\ $$$$\mathrm{electrons}\:\mathrm{of}\:\mathrm{1}\:\mathrm{g}\:\mathrm{atom}\:\mathrm{of}\:\mathrm{hydrogen} \\ $$$$\mathrm{undergo}\:\mathrm{transition}\:\mathrm{giving}\:\mathrm{the}\:\mathrm{spectral} \\ $$$$\mathrm{line}\:\mathrm{of}\:\mathrm{lowest}\:\mathrm{energy}\:\mathrm{in}\:\mathrm{the}\:\mathrm{visible} \\ $$$$\mathrm{region}\:\mathrm{of}\:\mathrm{its}\:\mathrm{atomic}\:\mathrm{spectrum} \\ $$$$\left(\mathrm{R}_{\mathrm{H}} \:=\:\mathrm{1}.\mathrm{1}\:×\:\mathrm{10}^{\mathrm{7}} \:\mathrm{m}^{−\mathrm{1}} ,\:{c}\:=\:\mathrm{3}\:×\:\mathrm{10}^{\mathrm{8}} \:{ms}^{−\mathrm{1}} ,\right. \\ $$$$\left.{h}\:=\:\mathrm{6}.\mathrm{62}\:×\:\mathrm{10}^{−\mathrm{34}} \:\mathrm{Js}\right) \\ $$

Question Number 22044    Answers: 1   Comments: 0

Let A = {1, 2, 3, ....., n}, if a_i is the minimum element of the set A; (where A; denotes the subset of A containing exactly three elements) and X denotes the set of A_i ′s, then evaluate Σ_(A_i ∈X) a.

$$\mathrm{Let}\:{A}\:=\:\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:.....,\:{n}\right\},\:\mathrm{if}\:{a}_{{i}} \:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{minimum}\:\mathrm{element}\:\mathrm{of}\:\mathrm{the}\:\mathrm{set}\:{A};\:\left(\mathrm{where}\right. \\ $$$${A};\:\mathrm{denotes}\:\mathrm{the}\:\mathrm{subset}\:\mathrm{of}\:{A}\:\mathrm{containing} \\ $$$$\left.\mathrm{exactly}\:\mathrm{three}\:\mathrm{elements}\right)\:\mathrm{and}\:{X}\:\mathrm{denotes} \\ $$$$\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:{A}_{{i}} '\mathrm{s},\:\mathrm{then}\:\mathrm{evaluate}\:\underset{{A}_{{i}} \in{X}} {\sum}{a}. \\ $$

Question Number 22043    Answers: 1   Comments: 0

In how many ways we can choose 3 squares on a chess board such that one of the squares has its two sides common to other two squares?

$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{we}\:\mathrm{can}\:\mathrm{choose}\:\mathrm{3} \\ $$$$\mathrm{squares}\:\mathrm{on}\:\mathrm{a}\:\mathrm{chess}\:\mathrm{board}\:\mathrm{such}\:\mathrm{that}\:\mathrm{one} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{squares}\:\mathrm{has}\:\mathrm{its}\:\mathrm{two}\:\mathrm{sides}\:\mathrm{common} \\ $$$$\mathrm{to}\:\mathrm{other}\:\mathrm{two}\:\mathrm{squares}? \\ $$

Question Number 22042    Answers: 1   Comments: 0

Determine the number of ordered pairs of positive integers (a, b) such that the least common multiple of a and b is 2^3 ∙5^7 ∙11^(13) .

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ordered} \\ $$$$\mathrm{pairs}\:\mathrm{of}\:\mathrm{positive}\:\mathrm{integers}\:\left({a},\:{b}\right)\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{least}\:\mathrm{common}\:\mathrm{multiple}\:\mathrm{of}\:{a} \\ $$$$\mathrm{and}\:{b}\:\mathrm{is}\:\mathrm{2}^{\mathrm{3}} \centerdot\mathrm{5}^{\mathrm{7}} \centerdot\mathrm{11}^{\mathrm{13}} . \\ $$

Question Number 22041    Answers: 0   Comments: 0

On the modified chess board 10 × 10, Amit and Suresh two persons which start moving towards each other. Each person moving with same constant speed. Amit can move only to the right and upwards along the lines while Suresh can move only to the left or downwards along the lines of the chess boards. The total number of ways in which Amit and Suresh can meet at same point during their trip.

$$\mathrm{On}\:\mathrm{the}\:\mathrm{modified}\:\mathrm{chess}\:\mathrm{board}\:\mathrm{10}\:×\:\mathrm{10}, \\ $$$$\mathrm{Amit}\:\mathrm{and}\:\mathrm{Suresh}\:\mathrm{two}\:\mathrm{persons}\:\mathrm{which} \\ $$$$\mathrm{start}\:\mathrm{moving}\:\mathrm{towards}\:\mathrm{each}\:\mathrm{other}.\:\mathrm{Each} \\ $$$$\mathrm{person}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{same}\:\mathrm{constant} \\ $$$$\mathrm{speed}.\:\mathrm{Amit}\:\mathrm{can}\:\mathrm{move}\:\mathrm{only}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{right}\:\mathrm{and}\:\mathrm{upwards}\:\mathrm{along}\:\mathrm{the}\:\mathrm{lines} \\ $$$$\mathrm{while}\:\mathrm{Suresh}\:\mathrm{can}\:\mathrm{move}\:\mathrm{only}\:\mathrm{to}\:\mathrm{the}\:\mathrm{left} \\ $$$$\mathrm{or}\:\mathrm{downwards}\:\mathrm{along}\:\mathrm{the}\:\mathrm{lines}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{chess}\:\mathrm{boards}.\:\mathrm{The}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{ways}\:\mathrm{in}\:\mathrm{which}\:\mathrm{Amit}\:\mathrm{and}\:\mathrm{Suresh}\:\mathrm{can} \\ $$$$\mathrm{meet}\:\mathrm{at}\:\mathrm{same}\:\mathrm{point}\:\mathrm{during}\:\mathrm{their}\:\mathrm{trip}. \\ $$

Question Number 22040    Answers: 0   Comments: 4

The total number of non-similar triangles which can be formed such that all the angles of the triangle are integers is

$$\mathrm{The}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{non}-\mathrm{similar} \\ $$$$\mathrm{triangles}\:\mathrm{which}\:\mathrm{can}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{all}\:\mathrm{the}\:\mathrm{angles}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{are} \\ $$$$\mathrm{integers}\:\mathrm{is} \\ $$

Question Number 22038    Answers: 0   Comments: 1

The symbols +, +, ×, ×, ★, •, are placed in the squares of the adjoining figure. The number of ways of placing symbols so that no row remains empty is

$$\mathrm{The}\:\mathrm{symbols}\:+,\:+,\:×,\:×,\:\bigstar,\:\bullet,\:\mathrm{are} \\ $$$$\mathrm{placed}\:\mathrm{in}\:\mathrm{the}\:\mathrm{squares}\:\mathrm{of}\:\mathrm{the}\:\mathrm{adjoining} \\ $$$$\mathrm{figure}.\:\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{of}\:\mathrm{placing} \\ $$$$\mathrm{symbols}\:\mathrm{so}\:\mathrm{that}\:\mathrm{no}\:\mathrm{row}\:\mathrm{remains}\:\mathrm{empty} \\ $$$$\mathrm{is} \\ $$

Question Number 22037    Answers: 0   Comments: 2

How many 5-digit numbers from the digits {0, 1, ....., 9} have? (i) Strictly increasing digits (ii) Strictly increasing or decreasing digits (iii) Increasing digits (iv) Increasing or decreasing digits

$$\mathrm{How}\:\mathrm{many}\:\mathrm{5}-\mathrm{digit}\:\mathrm{numbers}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{digits}\:\left\{\mathrm{0},\:\mathrm{1},\:.....,\:\mathrm{9}\right\}\:\mathrm{have}? \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Strictly}\:\mathrm{increasing}\:\mathrm{digits} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Strictly}\:\mathrm{increasing}\:\mathrm{or}\:\mathrm{decreasing} \\ $$$$\mathrm{digits} \\ $$$$\left(\mathrm{iii}\right)\:\mathrm{Increasing}\:\mathrm{digits} \\ $$$$\left(\mathrm{iv}\right)\:\mathrm{Increasing}\:\mathrm{or}\:\mathrm{decreasing}\:\mathrm{digits} \\ $$

Question Number 22036    Answers: 0   Comments: 1

2n objects of each of three kinds are given to two persons, so that each person gets 3n objects. Prove that this can be done in 3n^2 + 3n + 1 ways.

$$\mathrm{2}{n}\:\mathrm{objects}\:\mathrm{of}\:\mathrm{each}\:\mathrm{of}\:\mathrm{three}\:\mathrm{kinds}\:\mathrm{are} \\ $$$$\mathrm{given}\:\mathrm{to}\:\mathrm{two}\:\mathrm{persons},\:\mathrm{so}\:\mathrm{that}\:\mathrm{each} \\ $$$$\mathrm{person}\:\mathrm{gets}\:\mathrm{3}{n}\:\mathrm{objects}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{done}\:\mathrm{in}\:\mathrm{3}{n}^{\mathrm{2}} \:+\:\mathrm{3}{n}\:+\:\mathrm{1}\:\mathrm{ways}. \\ $$

Question Number 22035    Answers: 0   Comments: 0

The number of five digits can be made with the digits 1, 2, 3 each of which can be used atmost thrice in a number is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{five}\:\mathrm{digits}\:\mathrm{can}\:\mathrm{be}\:\mathrm{made} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{1},\:\mathrm{2},\:\mathrm{3}\:\mathrm{each}\:\mathrm{of}\:\mathrm{which}\:\mathrm{can} \\ $$$$\mathrm{be}\:\mathrm{used}\:\mathrm{atmost}\:\mathrm{thrice}\:\mathrm{in}\:\mathrm{a}\:\mathrm{number}\:\mathrm{is} \\ $$

Question Number 22023    Answers: 1   Comments: 3

Question Number 22020    Answers: 0   Comments: 0

The line of action of the resultant of two like parallel forces shifts by one fourth of the distance between the forces when the two forces are interchanged. The ratio of the two forces is

$$\mathrm{The}\:\mathrm{line}\:\mathrm{of}\:\mathrm{action}\:\mathrm{of}\:\mathrm{the}\:\mathrm{resultant}\:\mathrm{of} \\ $$$$\mathrm{two}\:\mathrm{like}\:\mathrm{parallel}\:\mathrm{forces}\:\mathrm{shifts}\:\mathrm{by}\:\mathrm{one} \\ $$$$\mathrm{fourth}\:\mathrm{of}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{the} \\ $$$$\mathrm{forces}\:\mathrm{when}\:\mathrm{the}\:\mathrm{two}\:\mathrm{forces}\:\mathrm{are} \\ $$$$\mathrm{interchanged}.\:\mathrm{The}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two} \\ $$$$\mathrm{forces}\:\mathrm{is} \\ $$

  Pg 1804      Pg 1805      Pg 1806      Pg 1807      Pg 1808      Pg 1809      Pg 1810      Pg 1811      Pg 1812      Pg 1813   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com