Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1808

Question Number 28982    Answers: 0   Comments: 0

fnd the value of Π_(n=1) ^∞ ((n^2 +1)/n^2 ) .

$${fnd}\:{the}\:{value}\:{of}\:\prod_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{n}^{\mathrm{2}} +\mathrm{1}}{{n}^{\mathrm{2}} }\:\:. \\ $$

Question Number 28981    Answers: 1   Comments: 1

find the values of Π_(n=2) ^∞ (1−(2/(n(n+1)))) .

$${find}\:{the}\:{values}\:{of}\:\prod_{{n}=\mathrm{2}} ^{\infty} \left(\mathrm{1}−\frac{\mathrm{2}}{{n}\left({n}+\mathrm{1}\right)}\right)\:. \\ $$

Question Number 28980    Answers: 0   Comments: 0

prove that sin(πz)=πz Π_(k=1) ^∞ (1−(z^2 /k^2 )) zfromC.

$${prove}\:{that}\:{sin}\left(\pi{z}\right)=\pi{z}\:\prod_{{k}=\mathrm{1}} ^{\infty} \left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{{k}^{\mathrm{2}} }\right)\:\:{zfromC}. \\ $$

Question Number 29012    Answers: 0   Comments: 1

Question Number 28978    Answers: 0   Comments: 0

let give p from R study the convergence of Π_(k=1) ^∞ (1+k^(−p) ) .

$${let}\:{give}\:{p}\:{from}\:{R}\:{study}\:{the}\:{convergence}\:{of} \\ $$$$\prod_{{k}=\mathrm{1}} ^{\infty} \:\left(\mathrm{1}+{k}^{−{p}} \right)\:. \\ $$

Question Number 28977    Answers: 0   Comments: 0

let give u_n =Σ_(k=1) ^n a_k ^2 with (a_k ) sequence of reals/a_(k>0) and v_n =Σ_(k=1) ^n (a_k /k) . prove that u_n converges⇒(v_n )converges

$${let}\:{give}\:{u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:{a}_{{k}} ^{\mathrm{2}} \:\:\:\:\:{with}\:\left({a}_{{k}} \right)\:{sequence}\:{of}\:{reals}/{a}_{{k}>\mathrm{0}} \\ $$$${and}\:{v}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{a}_{{k}} }{{k}}\:.\:{prove}\:{that}\:{u}_{{n}} {converges}\Rightarrow\left({v}_{{n}} \right){converges} \\ $$

Question Number 28976    Answers: 0   Comments: 0

find ∫_(−∞) ^(+∞) ((cosx)/(e^x +e^(−x) ))dx.

$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cosx}}{{e}^{{x}} +{e}^{−{x}} }{dx}. \\ $$

Question Number 28975    Answers: 0   Comments: 0

find the value of∫_0 ^∞ (x^3 /(1+x^7 ))dx.

$${find}\:{the}\:{value}\:{of}\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{7}} }{dx}. \\ $$

Question Number 28960    Answers: 1   Comments: 1

Question Number 28954    Answers: 0   Comments: 0

please solve 4,5,6

$${please}\:{solve}\:\mathrm{4},\mathrm{5},\mathrm{6} \\ $$$$ \\ $$

Question Number 28953    Answers: 0   Comments: 0

Question Number 28952    Answers: 0   Comments: 0

Question Number 28949    Answers: 0   Comments: 0

xy((x^4 −y^4 )/(x^4 +y^4 )) and 0 for origin then funtion is 1.continuous 2.mixpartial are not equal at origin 3.limit at origin is 1

$${xy}\frac{{x}^{\mathrm{4}} −{y}^{\mathrm{4}} }{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }\:\:{and}\:\mathrm{0}\:{for}\:{origin} \\ $$$${then}\:{funtion}\:{is} \\ $$$$\mathrm{1}.{continuous} \\ $$$$\mathrm{2}.{mixpartial}\:{are}\:{not}\:{equal}\:{at}\:{origin} \\ $$$$\mathrm{3}.{limit}\:{at}\:{origin}\:{is}\:\mathrm{1} \\ $$

Question Number 28938    Answers: 0   Comments: 3

Question Number 28932    Answers: 1   Comments: 0

Determine the least number of 4 digits, which is perfect square. Method of finding is required.

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{least}\:\mathrm{number}\:\mathrm{of}\:\mathrm{4}\:\mathrm{digits}, \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{perfect}\:\mathrm{square}. \\ $$$$\mathrm{Method}\:\mathrm{of}\:\mathrm{finding}\:\mathrm{is}\:\boldsymbol{\mathrm{required}}. \\ $$

Question Number 28929    Answers: 1   Comments: 0

If T=2π((L/g))^(1/(2 )) and L=100±0.1 cm(limit standard error) T=2.01±0.01 s (limit standard error) Calculate the value of g and its standard error.

$${If}\:{T}=\mathrm{2}\pi\left(\frac{{L}}{{g}}\right)^{\frac{\mathrm{1}}{\mathrm{2}\:}} \:{and} \\ $$$${L}=\mathrm{100}\pm\mathrm{0}.\mathrm{1}\:{cm}\left({limit}\:{standard}\:\right. \\ $$$$\left.{error}\right) \\ $$$${T}=\mathrm{2}.\mathrm{01}\pm\mathrm{0}.\mathrm{01}\:{s}\:\left({limit}\:{standard}\right. \\ $$$$\left.{error}\right) \\ $$$${Calculate}\:{the}\:{value}\:{of}\:{g}\:{and}\:{its} \\ $$$${standard}\:{error}. \\ $$

Question Number 28930    Answers: 0   Comments: 1

Question Number 28921    Answers: 1   Comments: 0

Question Number 28940    Answers: 1   Comments: 1

Question Number 28911    Answers: 1   Comments: 1

Question Number 28903    Answers: 0   Comments: 1

Question Number 28902    Answers: 0   Comments: 0

Question Number 28894    Answers: 1   Comments: 5

Question Number 28905    Answers: 1   Comments: 0

A body rolls down a slope from a height of 100m. the velocity at the foot of the slope is 20 m/s. What percentage of the P.E is converted in K.E ? Answer: 20%

$$\mathrm{A}\:\mathrm{body}\:\mathrm{rolls}\:\mathrm{down}\:\mathrm{a}\:\mathrm{slope}\:\mathrm{from}\:\mathrm{a}\:\mathrm{height}\:\mathrm{of}\:\:\mathrm{100m}.\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{at}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{slope}\:\mathrm{is}\:\:\mathrm{20}\:\mathrm{m}/\mathrm{s}.\:\:\mathrm{What}\:\mathrm{percentage}\:\mathrm{of}\:\mathrm{the}\:\boldsymbol{\mathrm{P}}.\boldsymbol{\mathrm{E}}\:\:\mathrm{is}\:\mathrm{converted}\:\mathrm{in}\:\:\boldsymbol{\mathrm{K}}.\boldsymbol{\mathrm{E}}\:\:? \\ $$$$ \\ $$$$\boldsymbol{\mathrm{A}}\mathrm{nswer}:\:\:\:\:\:\mathrm{20\%} \\ $$

Question Number 28892    Answers: 2   Comments: 0

find lim_(x→0) (1/x)ln(((e^x −1)/x)) .

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\mathrm{1}}{{x}}{ln}\left(\frac{{e}^{{x}} −\mathrm{1}}{{x}}\right)\:. \\ $$

Question Number 28891    Answers: 1   Comments: 0

let give u_(n,k) = (1/(n+1)) +(1/(n+2)) +.... (1/(kn)) k integr fixed ≥2 find lim_(n→+ ∞) u_(n,k) .

$${let}\:{give}\:{u}_{{n},{k}} =\:\frac{\mathrm{1}}{{n}+\mathrm{1}}\:+\frac{\mathrm{1}}{{n}+\mathrm{2}}\:+....\:\frac{\mathrm{1}}{{kn}}\:\:\:{k}\:{integr}\:{fixed}\:\geqslant\mathrm{2} \\ $$$${find}\:{lim}_{{n}\rightarrow+\:\:\infty} {u}_{{n},{k}} . \\ $$

  Pg 1803      Pg 1804      Pg 1805      Pg 1806      Pg 1807      Pg 1808      Pg 1809      Pg 1810      Pg 1811      Pg 1812   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com