Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1806

Question Number 19704    Answers: 1   Comments: 0

What is the sum (in base 10) of all the natural numbers less than 64 which have exactly three ones in their base 2 representation?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\left(\mathrm{in}\:\mathrm{base}\:\mathrm{10}\right)\:\mathrm{of}\:\mathrm{all}\:\mathrm{the} \\ $$$$\mathrm{natural}\:\mathrm{numbers}\:\mathrm{less}\:\mathrm{than}\:\mathrm{64}\:\mathrm{which} \\ $$$$\mathrm{have}\:\mathrm{exactly}\:\mathrm{three}\:\mathrm{ones}\:\mathrm{in}\:\mathrm{their}\:\mathrm{base}\:\mathrm{2} \\ $$$$\mathrm{representation}? \\ $$

Question Number 19783    Answers: 1   Comments: 3

The sides of a triangle are of lengths (√((m^2 −n^2 ))) ,m^2 +n^2 , 2mn. Show that it is a right angle Δ.

$${The}\:{sides}\:{of}\:{a}\:{triangle}\:{are}\:{of} \\ $$$${lengths}\:\sqrt{\left({m}^{\mathrm{2}} −{n}^{\mathrm{2}} \right)}\:,{m}^{\mathrm{2}} +{n}^{\mathrm{2}} ,\:\mathrm{2}{mn}. \\ $$$${Show}\:{that}\:{it}\:{is}\:{a}\:{right}\:{angle}\:\Delta. \\ $$

Question Number 19700    Answers: 1   Comments: 0

What is the maximum possible value of k for which 2013 can be written as a sum of k consecutive positive integers?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of} \\ $$$${k}\:\mathrm{for}\:\mathrm{which}\:\mathrm{2013}\:\mathrm{can}\:\mathrm{be}\:\mathrm{written}\:\mathrm{as}\:\mathrm{a} \\ $$$$\mathrm{sum}\:\mathrm{of}\:{k}\:\mathrm{consecutive}\:\mathrm{positive}\:\mathrm{integers}? \\ $$

Question Number 19699    Answers: 0   Comments: 0

Let S be a circle with centre O. A chord AB, not a diameter, divides S into two regions R_1 and R_2 such that O belongs to R_2 . Let S_1 be a circle with centre in R_1 , touching AB at X and S internally. Let S_2 be a circle with centre in R_2 , touching AB at Y, the circle S internally and passing through the centre of S. The point X lies on the diameter passing through the centre of S_2 and ∠YXO = 30°. If the radius of S_2 is 100 then what is the radius of S_1 ?

$$\mathrm{Let}\:{S}\:\mathrm{be}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{with}\:\mathrm{centre}\:{O}.\:\mathrm{A}\:\mathrm{chord} \\ $$$${AB},\:\mathrm{not}\:\mathrm{a}\:\mathrm{diameter},\:\mathrm{divides}\:{S}\:\mathrm{into}\:\mathrm{two} \\ $$$$\mathrm{regions}\:{R}_{\mathrm{1}} \:\mathrm{and}\:{R}_{\mathrm{2}} \:\mathrm{such}\:\mathrm{that}\:{O}\:\mathrm{belongs} \\ $$$$\mathrm{to}\:{R}_{\mathrm{2}} .\:\mathrm{Let}\:{S}_{\mathrm{1}} \:\mathrm{be}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{with}\:\mathrm{centre}\:\mathrm{in} \\ $$$${R}_{\mathrm{1}} ,\:\mathrm{touching}\:{AB}\:\mathrm{at}\:{X}\:\mathrm{and}\:{S}\:\mathrm{internally}. \\ $$$$\mathrm{Let}\:{S}_{\mathrm{2}} \:\mathrm{be}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{with}\:\mathrm{centre}\:\mathrm{in}\:{R}_{\mathrm{2}} , \\ $$$$\mathrm{touching}\:{AB}\:\mathrm{at}\:{Y},\:\mathrm{the}\:\mathrm{circle}\:{S}\:\mathrm{internally} \\ $$$$\mathrm{and}\:\mathrm{passing}\:\mathrm{through}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:{S}. \\ $$$$\mathrm{The}\:\mathrm{point}\:{X}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\:\mathrm{diameter} \\ $$$$\mathrm{passing}\:\mathrm{through}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:{S}_{\mathrm{2}} \:\mathrm{and} \\ $$$$\angle{YXO}\:=\:\mathrm{30}°.\:\mathrm{If}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:{S}_{\mathrm{2}} \:\mathrm{is}\:\mathrm{100} \\ $$$$\mathrm{then}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:{S}_{\mathrm{1}} ? \\ $$

Question Number 19698    Answers: 1   Comments: 0

Let f(x) = x^3 − 3x + b and g(x) = x^2 + bx − 3, where b is a real number. What is the sum of all possible values of b for which the equations f(x) = 0 and g(x) = 0 have a common root?

$$\mathrm{Let}\:{f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \:−\:\mathrm{3}{x}\:+\:{b}\:\mathrm{and}\:{g}\left({x}\right)\:=\:{x}^{\mathrm{2}} \:+ \\ $$$${bx}\:−\:\mathrm{3},\:\mathrm{where}\:{b}\:\mathrm{is}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number}.\:\mathrm{What} \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:{b}\:\mathrm{for} \\ $$$$\mathrm{which}\:\mathrm{the}\:\mathrm{equations}\:{f}\left({x}\right)\:=\:\mathrm{0}\:\mathrm{and}\:{g}\left({x}\right) \\ $$$$=\:\mathrm{0}\:\mathrm{have}\:\mathrm{a}\:\mathrm{common}\:\mathrm{root}? \\ $$

Question Number 22315    Answers: 0   Comments: 0

Prove that the greatest coefficient in the expansion of (x_1 +x_2 +x_3 +...+x_k )^n = ((n!)/((q!)^(k−r) [(q+1)!]^r )) , where n = qk + r, 0 ≤ r ≤ k − 1

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{coefficient}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +...+{x}_{{k}} \right)^{{n}} \\ $$$$=\:\frac{{n}!}{\left({q}!\right)^{{k}−{r}} \left[\left({q}+\mathrm{1}\right)!\right]^{{r}} }\:,\:\mathrm{where}\:{n}\:=\:{qk}\:+\:{r}, \\ $$$$\mathrm{0}\:\leqslant\:{r}\:\leqslant\:{k}\:−\:\mathrm{1} \\ $$

Question Number 19696    Answers: 1   Comments: 0

Let m be the smallest odd positive integer for which 1 + 2 + ... + m is a square of an integer and let n be the smallest even positive integer for which 1 + 2 + ... + n is a square of an integer. What is the value of m + n?

$$\mathrm{Let}\:{m}\:\mathrm{be}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{odd}\:\mathrm{positive} \\ $$$$\mathrm{integer}\:\mathrm{for}\:\mathrm{which}\:\mathrm{1}\:+\:\mathrm{2}\:+\:...\:+\:{m}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{square}\:\mathrm{of}\:\mathrm{an}\:\mathrm{integer}\:\mathrm{and}\:\mathrm{let}\:{n}\:\mathrm{be}\:\mathrm{the} \\ $$$$\mathrm{smallest}\:\mathrm{even}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{for} \\ $$$$\mathrm{which}\:\mathrm{1}\:+\:\mathrm{2}\:+\:...\:+\:{n}\:\mathrm{is}\:\mathrm{a}\:\mathrm{square}\:\mathrm{of}\:\mathrm{an} \\ $$$$\mathrm{integer}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{m}\:+\:{n}? \\ $$

Question Number 22313    Answers: 1   Comments: 2

Question Number 19690    Answers: 1   Comments: 0

If ∣z − (4/z)∣ = 2, then find the maximum value of ∣z∣.

$$\mathrm{If}\:\mid{z}\:−\:\frac{\mathrm{4}}{{z}}\mid\:=\:\mathrm{2},\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mid{z}\mid. \\ $$

Question Number 19786    Answers: 1   Comments: 0

For natural numbers x and y, let (x, y) denote the greatest common divisor of x and y. How many pairs of natural numbers x and y with x ≤ y satisfy the equation xy = x + y + (x, y)?

$$\mathrm{For}\:\mathrm{natural}\:\mathrm{numbers}\:{x}\:\mathrm{and}\:{y},\:\mathrm{let}\:\left({x},\:{y}\right) \\ $$$$\mathrm{denote}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{common}\:\mathrm{divisor}\:\mathrm{of} \\ $$$${x}\:\mathrm{and}\:{y}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{natural} \\ $$$$\mathrm{numbers}\:{x}\:\mathrm{and}\:{y}\:\mathrm{with}\:{x}\:\leqslant\:{y}\:\mathrm{satisfy}\:\mathrm{the} \\ $$$$\mathrm{equation}\:{xy}\:=\:{x}\:+\:{y}\:+\:\left({x},\:{y}\right)? \\ $$

Question Number 19785    Answers: 1   Comments: 0

If x^((x^4 )) = 4, what is the value of x^((x^2 )) + x^((x^8 )) ?

$$\mathrm{If}\:{x}^{\left({x}^{\mathrm{4}} \right)} \:=\:\mathrm{4},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$${x}^{\left({x}^{\mathrm{2}} \right)} \:+\:{x}^{\left({x}^{\mathrm{8}} \right)} ? \\ $$

Question Number 19688    Answers: 1   Comments: 0

The vertices of a square are z_1 , z_2 , z_3 and z_4 taken in the anticlockwise order, then z_3 = (1) −iz_1 + (1 + i)z_2 (2) iz_1 + (1 + i)z_2 (3) z_1 + (1 + i)z_2 (4) (1 + i)z_1 + z_2

$$\mathrm{The}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{square}\:\mathrm{are}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \\ $$$$\mathrm{and}\:{z}_{\mathrm{4}} \:\mathrm{taken}\:\mathrm{in}\:\mathrm{the}\:\mathrm{anticlockwise}\:\mathrm{order}, \\ $$$$\mathrm{then}\:{z}_{\mathrm{3}} \:= \\ $$$$\left(\mathrm{1}\right)\:−{iz}_{\mathrm{1}} \:+\:\left(\mathrm{1}\:+\:{i}\right){z}_{\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)\:{iz}_{\mathrm{1}} \:+\:\left(\mathrm{1}\:+\:{i}\right){z}_{\mathrm{2}} \\ $$$$\left(\mathrm{3}\right)\:{z}_{\mathrm{1}} \:+\:\left(\mathrm{1}\:+\:{i}\right){z}_{\mathrm{2}} \\ $$$$\left(\mathrm{4}\right)\:\left(\mathrm{1}\:+\:{i}\right){z}_{\mathrm{1}} \:+\:{z}_{\mathrm{2}} \\ $$

Question Number 19687    Answers: 1   Comments: 0

Let z_1 , z_2 , z_3 be three vertices of an equilateral triangle circumscribing the circle ∣z∣ = (1/2). If z_1 = (1/2) + (((√3)i)/2) and z_1 , z_2 , z_3 are in anticlockwise sense then z_2 is

$$\mathrm{Let}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{be}\:\mathrm{three}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{an} \\ $$$$\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{circumscribing}\:\mathrm{the} \\ $$$$\mathrm{circle}\:\mid{z}\mid\:=\:\frac{\mathrm{1}}{\mathrm{2}}.\:\mathrm{If}\:{z}_{\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}{i}}{\mathrm{2}}\:\mathrm{and}\:{z}_{\mathrm{1}} , \\ $$$${z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{in}\:\mathrm{anticlockwise}\:\mathrm{sense}\:\mathrm{then}\:{z}_{\mathrm{2}} \:\mathrm{is} \\ $$

Question Number 19683    Answers: 1   Comments: 0

In an A.P; the common difference is −2 and the largest term exceeds the middle term by 58. Find the smallest term of the A.P.

$$\mathrm{In}\:\mathrm{an}\:\mathrm{A}.\mathrm{P};\:\mathrm{the}\:\mathrm{common}\:\mathrm{difference}\:\mathrm{is}\:−\mathrm{2}\:\mathrm{and}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{term}\:\:\mathrm{exceeds}\:\mathrm{the}\:\mathrm{middle}\:\mathrm{term}\:\mathrm{by}\:\mathrm{58}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{term}\:\mathrm{of}\:\mathrm{the}\:\mathrm{A}.\mathrm{P}. \\ $$

Question Number 19679    Answers: 0   Comments: 1

Question Number 19675    Answers: 1   Comments: 1

Question Number 19668    Answers: 0   Comments: 2

Question Number 19665    Answers: 0   Comments: 0

Question Number 19666    Answers: 1   Comments: 0

∫ x^4 (√(x^2 + 1)) dx

$$\int\:{x}^{\mathrm{4}} \sqrt{{x}^{\mathrm{2}} \:+\:\mathrm{1}}\:{dx} \\ $$

Question Number 19659    Answers: 1   Comments: 0

((1+secθ)/(secθ))=((sin^(2 ) θ)/(1−cosθ))

$$\frac{\mathrm{1}+{sec}\theta}{{sec}\theta}=\frac{{sin}^{\mathrm{2}\:} \theta}{\mathrm{1}−{cos}\theta} \\ $$$$ \\ $$

Question Number 19658    Answers: 0   Comments: 0

=((sec x−1)/(sec x+1)) =((sec x+(1−1)−1)/(sec x+1)) =(((sec x+1)−2)/(sec x+1)) =((sec x+1)/(sec x+1))−(2/(sec x+1)) =1−(2/(sec x+1)) =1−2(sec x+1)^(−1) (d/dx)(1−2(sec x+1)^(−1) ) =−2(−1(sec x+1)^(−2) )(sec x tan x) =((2 sec x tan x)/((sec x+1)^2 ))

$$=\frac{\mathrm{sec}\:\mathrm{x}−\mathrm{1}}{\mathrm{sec}\:\mathrm{x}+\mathrm{1}} \\ $$$$=\frac{\mathrm{sec}\:\mathrm{x}+\left(\mathrm{1}−\mathrm{1}\right)−\mathrm{1}}{\mathrm{sec}\:\mathrm{x}+\mathrm{1}} \\ $$$$=\frac{\left(\mathrm{sec}\:\mathrm{x}+\mathrm{1}\right)−\mathrm{2}}{\mathrm{sec}\:\mathrm{x}+\mathrm{1}} \\ $$$$=\frac{\mathrm{sec}\:\mathrm{x}+\mathrm{1}}{\mathrm{sec}\:\mathrm{x}+\mathrm{1}}−\frac{\mathrm{2}}{\mathrm{sec}\:\mathrm{x}+\mathrm{1}} \\ $$$$=\mathrm{1}−\frac{\mathrm{2}}{\mathrm{sec}\:\mathrm{x}+\mathrm{1}} \\ $$$$=\mathrm{1}−\mathrm{2}\left(\mathrm{sec}\:\mathrm{x}+\mathrm{1}\right)^{−\mathrm{1}} \\ $$$$\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{1}−\mathrm{2}\left(\mathrm{sec}\:\mathrm{x}+\mathrm{1}\right)^{−\mathrm{1}} \right) \\ $$$$=−\mathrm{2}\left(−\mathrm{1}\left(\mathrm{sec}\:\mathrm{x}+\mathrm{1}\right)^{−\mathrm{2}} \right)\left(\mathrm{sec}\:\mathrm{x}\:\mathrm{tan}\:\mathrm{x}\right) \\ $$$$=\frac{\mathrm{2}\:\mathrm{sec}\:\mathrm{x}\:\mathrm{tan}\:\mathrm{x}}{\left(\mathrm{sec}\:\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 19646    Answers: 0   Comments: 1

Find the sum of all possible digits that comes at ten′s place for 3^n where n is any natural number.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{digits}\:\mathrm{that} \\ $$$$\mathrm{comes}\:\mathrm{at}\:\mathrm{ten}'\mathrm{s}\:\mathrm{place}\:\mathrm{for}\:\mathrm{3}^{{n}} \:\mathrm{where}\:{n}\:\mathrm{is} \\ $$$$\mathrm{any}\:\mathrm{natural}\:\mathrm{number}. \\ $$

Question Number 19638    Answers: 1   Comments: 0

Let P(x) is a polynomial such that P(1) = 1, P(2) = 2, P(3) = 3, and P(4) = 5. Find the value of P(6).

$$\mathrm{Let}\:{P}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{such}\:\mathrm{that} \\ $$$${P}\left(\mathrm{1}\right)\:=\:\mathrm{1},\:{P}\left(\mathrm{2}\right)\:=\:\mathrm{2},\:{P}\left(\mathrm{3}\right)\:=\:\mathrm{3},\:\mathrm{and} \\ $$$${P}\left(\mathrm{4}\right)\:=\:\mathrm{5}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{P}\left(\mathrm{6}\right). \\ $$

Question Number 19637    Answers: 1   Comments: 0

Determine the number of five-digit integers (37abc) in base 10 such that each of the numbers (37abc), (37bca) and 37cab is divisible by 37.

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{five}-\mathrm{digit} \\ $$$$\mathrm{integers}\:\left(\mathrm{37}{abc}\right)\:\mathrm{in}\:\mathrm{base}\:\mathrm{10}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{numbers}\:\left(\mathrm{37}{abc}\right),\:\left(\mathrm{37}{bca}\right) \\ $$$$\mathrm{and}\:\mathrm{37}{cab}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{37}. \\ $$

Question Number 19634    Answers: 1   Comments: 0

How many ordered triplets (x, y, z) of positive integer satisfy lcm(x, y) = 72, lcm(x, z) = 600 and lcm(y, z) = 900?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{ordered}\:\mathrm{triplets}\:\left({x},\:{y},\:{z}\right)\:\mathrm{of} \\ $$$$\mathrm{positive}\:\mathrm{integer}\:\mathrm{satisfy}\:\mathrm{lcm}\left({x},\:{y}\right)\:=\:\mathrm{72}, \\ $$$$\mathrm{lcm}\left({x},\:{z}\right)\:=\:\mathrm{600}\:\mathrm{and}\:\mathrm{lcm}\left({y},\:{z}\right)\:=\:\mathrm{900}? \\ $$

Question Number 19643    Answers: 1   Comments: 0

Find the real solution of the equation (√(17 + 8x − 2x^2 )) + (√(4 + 12x − 3x^2 )) = x^2 − 4x + 13.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{real}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\sqrt{\mathrm{17}\:+\:\mathrm{8}{x}\:−\:\mathrm{2}{x}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{4}\:+\:\mathrm{12}{x}\:−\:\mathrm{3}{x}^{\mathrm{2}} }\:=\:{x}^{\mathrm{2}} \\ $$$$−\:\mathrm{4}{x}\:+\:\mathrm{13}. \\ $$

  Pg 1801      Pg 1802      Pg 1803      Pg 1804      Pg 1805      Pg 1806      Pg 1807      Pg 1808      Pg 1809      Pg 1810   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com