Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1806
Question Number 28202 Answers: 1 Comments: 1
Question Number 28201 Answers: 0 Comments: 0
$$\mathrm{prove}\:\mathrm{the}\:\mathrm{sine}\:\mathrm{rule}\:\mathrm{using}\:\mathrm{dot}\:\mathrm{product} \\ $$$$\mathrm{need}\:\mathrm{help}\:\mathrm{please} \\ $$
Question Number 28143 Answers: 1 Comments: 0
$$\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}=\mathrm{3} \\ $$$$\mathrm{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }=? \\ $$
Question Number 28124 Answers: 0 Comments: 3
$${f}\left({R}^{+} \rightarrow{R}\right)\:{is}\:{a}\:{differentiable} \\ $$$${function}\:{obeying} \\ $$$$\mathrm{2}{f}\left({x}\right)={f}\left({xy}\right)+{f}\left(\frac{{x}}{{y}}\right) \\ $$$${for}\:{all}\:{x},{y}\:\in\:{R}^{+} \:{and}\: \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{0},\:{f}\:'\left(\mathrm{1}\right)=\mathrm{1}\:. \\ $$$${Find}\:{f}\left({x}\right).\:{More}\:{questions}\:{may} \\ $$$${follow}.. \\ $$
Question Number 28116 Answers: 0 Comments: 0
Question Number 28105 Answers: 0 Comments: 1
Question Number 28098 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{\mathrm{log}_{\mathrm{e}} \mathrm{x}}{\mathrm{x}^{\mathrm{h}} }\:,\:\:\:\:\:\:\:\:\:\:\:\mathrm{h}\:>\:\mathrm{0} \\ $$
Question Number 28097 Answers: 0 Comments: 3
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{\mathrm{3}^{\mathrm{x}} \:−\:\mathrm{2}^{\mathrm{x}} }{\mathrm{x}^{\mathrm{2}} } \\ $$
Question Number 28096 Answers: 0 Comments: 2
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{x}\:−\:\mathrm{sinx}} \\ $$
Question Number 28095 Answers: 0 Comments: 2
$$\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\:\left(\mathrm{1}\:+\:\mathrm{tanx}\right)^{−\mathrm{cotx}} \\ $$
Question Number 28093 Answers: 0 Comments: 2
$$\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\:\left(\mathrm{1}\:+\:\mathrm{tanx}\right)^{\mathrm{cotx}} \\ $$
Question Number 28113 Answers: 1 Comments: 1
Question Number 28110 Answers: 0 Comments: 1
Question Number 28088 Answers: 0 Comments: 6
$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\:\left(\mathrm{sinx}\right)^{\left(\mathrm{tanx}\right)} \\ $$
Question Number 28084 Answers: 0 Comments: 6
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\left(\mathrm{x}\:−\:\mathrm{log}_{\mathrm{e}} \mathrm{x}\right) \\ $$
Question Number 28076 Answers: 1 Comments: 1
Question Number 28075 Answers: 0 Comments: 0
Question Number 28073 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{t}\:{e}^{−{x}} \right){dx}\:\:\:{with}\:\:\mathrm{0}<{t}<\mathrm{1}\:\:. \\ $$
Question Number 28072 Answers: 0 Comments: 1
$${let}\:{give}\:{the}\:{function}\:\:{f}\left({x}\right)={x}^{\mathrm{4}} \:\:\:\mathrm{2}\pi\:{periodic}\:{and}\:{even} \\ $$$${developp}\:\:\:{f}\:{atfourier}\:{series}. \\ $$
Question Number 28071 Answers: 0 Comments: 3
$${let}\:{give}\:\:{A}_{{p}} =\:\int_{\mathrm{0}} ^{\pi} \:{t}^{{p}} \:{cos}\left({nx}\right)\:\:{with}\:{nand}\:{p}\:{from}\:{N} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{relation}\:{between}\:\:{A}_{{p}} \:{and}\:{A}_{{p}−\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{arelation}\:{between}\:\:{A}_{\mathrm{2}{p}} \:\:{and}\:{A}_{\mathrm{2}{p}−\mathrm{2}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{a}\:{relation}?{betweer}\:{A}_{\mathrm{2}{p}+\mathrm{1}} \:{and}\:\:{A}_{\mathrm{2}{p}−\mathrm{1}} \\ $$$$\left.\mathrm{3}\right)\:{cslculat}\:\:{A}_{\mathrm{0}\:} ,\:{A}_{\mathrm{1}} ,\:{A}_{\mathrm{2}} \:,\:{A}_{\mathrm{2}} . \\ $$
Question Number 28070 Answers: 1 Comments: 0
Question Number 28068 Answers: 0 Comments: 0
$${let}\:{give}\:\:\:{I}_{{a}} \:\:=\:\:\int_{\mathrm{0}} ^{+\propto} \:\:\:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:\:\:{by}\:{using}\:{Residus}\:{theorem} \\ $$$${find}\:{the}\:{value}\:{of}\:\:{I}_{{a}} \:\:\:\:\:{with}\:\:\mathrm{0}<{a}<\mathrm{1}\:\:\:. \\ $$
Question Number 28067 Answers: 0 Comments: 0
$${let}\:{give}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}+{cosx}}\:\:\:{fonction}\:\mathrm{2}\pi\:{periodic}\:{even}. \\ $$$${developp}\:{f}\:\:{at}\:{fourier}\:{series}. \\ $$
Question Number 28050 Answers: 0 Comments: 14
Question Number 28044 Answers: 0 Comments: 8
Question Number 28041 Answers: 0 Comments: 0
$$\int\frac{\varkappa^{\mathrm{2}} }{\left(\varkappa\mathrm{sin}\varkappa+\mathrm{cos}\varkappa\right)^{\mathrm{2}} }\mathrm{d}\left(\varkappa\right) \\ $$
Pg 1801 Pg 1802 Pg 1803 Pg 1804 Pg 1805 Pg 1806 Pg 1807 Pg 1808 Pg 1809 Pg 1810
Terms of Service
Privacy Policy
Contact: info@tinkutara.com