Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1805

Question Number 28856    Answers: 0   Comments: 0

Question Number 28854    Answers: 0   Comments: 0

The arms of an ac maxwell bridge are arranged as follows: AB is a non - active resistance of 1000 Ω in parallel with a capacitor of capacitance of 0.5μF , BC is a non - inductive resistance of 600 Ω, CD is inductive impedance (unknown) and DA is a non - inductive resustance of 400 Ω. If balance is obtained under these conditions. Find the value of the resistance and the inductance of the branch CD and show the circuit diagram.

$$\mathrm{The}\:\mathrm{arms}\:\mathrm{of}\:\mathrm{an}\:\mathrm{ac}\:\mathrm{maxwell}\:\mathrm{bridge}\:\mathrm{are}\:\mathrm{arranged}\:\mathrm{as}\:\mathrm{follows}:\:\:\mathrm{AB}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{non}\:-\:\mathrm{active} \\ $$$$\mathrm{resistance}\:\mathrm{of}\:\:\:\mathrm{1000}\:\Omega\:\:\mathrm{in}\:\mathrm{parallel}\:\mathrm{with}\:\mathrm{a}\:\mathrm{capacitor}\:\mathrm{of}\:\mathrm{capacitance}\:\mathrm{of}\:\:\:\mathrm{0}.\mathrm{5}\mu\mathrm{F}\:, \\ $$$$\mathrm{BC}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{non}\:-\:\mathrm{inductive}\:\mathrm{resistance}\:\mathrm{of}\:\:\mathrm{600}\:\Omega,\:\:\:\mathrm{CD}\:\mathrm{is}\:\mathrm{inductive}\:\mathrm{impedance}\:\left(\mathrm{unknown}\right) \\ $$$$\mathrm{and}\:\mathrm{DA}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{non}\:-\:\mathrm{inductive}\:\mathrm{resustance}\:\mathrm{of}\:\:\mathrm{400}\:\Omega.\:\:\mathrm{If}\:\mathrm{balance}\:\mathrm{is}\:\mathrm{obtained}\:\mathrm{under} \\ $$$$\mathrm{these}\:\mathrm{conditions}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{resistance}\:\mathrm{and}\:\mathrm{the}\:\mathrm{inductance}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{branch}\:\:\mathrm{CD}\:\:\mathrm{and}\:\mathrm{show}\:\mathrm{the}\:\mathrm{circuit}\:\mathrm{diagram}. \\ $$

Question Number 28852    Answers: 0   Comments: 0

Testing of a Bakelite sample by schering Bridge having a standard capacitor of 106pF , balance was obtained with a capacitance of 0.351 F in parallel with non - inductive resistance in the remaining arm of the bridge being 130 Ω. Determine the capacitance and the equivalent series resistance of the specimen and draw the circuit diagram.

$$\mathrm{Testing}\:\mathrm{of}\:\mathrm{a}\:\mathrm{Bakelite}\:\mathrm{sample}\:\mathrm{by}\:\mathrm{schering}\:\mathrm{Bridge}\:\mathrm{having}\:\mathrm{a}\:\mathrm{standard}\:\mathrm{capacitor} \\ $$$$\mathrm{of}\:\:\mathrm{106pF}\:,\:\:\mathrm{balance}\:\mathrm{was}\:\mathrm{obtained}\:\mathrm{with}\:\mathrm{a}\:\mathrm{capacitance}\:\mathrm{of}\:\:\:\mathrm{0}.\mathrm{351}\:\mathrm{F}\:\:\mathrm{in}\:\mathrm{parallel} \\ $$$$\mathrm{with}\:\mathrm{non}\:-\:\mathrm{inductive}\:\mathrm{resistance}\:\mathrm{in}\:\mathrm{the}\:\mathrm{remaining}\:\mathrm{arm}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bridge}\:\mathrm{being}\:\:\:\mathrm{130}\:\Omega. \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{capacitance}\:\mathrm{and}\:\mathrm{the}\:\mathrm{equivalent}\:\mathrm{series}\:\mathrm{resistance}\:\mathrm{of}\:\mathrm{the}\:\mathrm{specimen} \\ $$$$\mathrm{and}\:\mathrm{draw}\:\mathrm{the}\:\mathrm{circuit}\:\mathrm{diagram}. \\ $$

Question Number 28833    Answers: 0   Comments: 0

let give ϕ(x) =x ,ϕ 2π periodique even developp f at fourier series then find the value of Σ_(n=1) ^∞ (((−1)^n )/n^2 ) and Σ_(n=0) ^∞ (1/((2n+1)^2 )) .

$${let}\:{give}\:\varphi\left({x}\right)\:={x}\:,\varphi\:\mathrm{2}\pi\:{periodique}\:{even} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{series}\:{then}\:{find}\:{the}\:{value}\:{of} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} }\:{and}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$

Question Number 28832    Answers: 0   Comments: 0

find the value of A_n = ∫_1 ^(+∞) (dt/(t^(n+1) (√(t−1)))) .withn∈N .

$${find}\:{the}\:{value}\:{of}\:\:{A}_{{n}} =\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dt}}{{t}^{{n}+\mathrm{1}} \sqrt{{t}−\mathrm{1}}}\:.{withn}\in{N}\:. \\ $$

Question Number 28835    Answers: 1   Comments: 4

Question Number 28830    Answers: 0   Comments: 0

let give f(x)= ch(αx) and 2π periodic with α≠0 developp f at fourier series.

$${let}\:{give}\:{f}\left({x}\right)=\:{ch}\left(\alpha{x}\right)\:{and}\:\mathrm{2}\pi\:{periodic}\:{with}\:\alpha\neq\mathrm{0} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{series}. \\ $$

Question Number 28828    Answers: 0   Comments: 0

find f(x)=∫_0 ^1 ln(1+xt^2 )dt with ∣x∣<1 .

$${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right){dt}\:{with}\:\mid{x}\mid<\mathrm{1}\:. \\ $$

Question Number 28827    Answers: 0   Comments: 0

let give F(x)=∫_0 ^∞ ((arctan(1+x(1+t^2 )))/(1+t^2 ))dt and x>0 calculate (dF/dx)(x).

$${let}\:{give}\:{F}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{1}+{x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\:{and}\:{x}>\mathrm{0} \\ $$$${calculate}\:\frac{{dF}}{{dx}}\left({x}\right).\:\: \\ $$

Question Number 28826    Answers: 0   Comments: 0

let give f(x)= e^(−x) cosx and 2π periodic 1) developp f at fourier series 2) find the value of Σ_(n=−∞) ^(n=+∞) (((−1)^n )/(1+n^2 )) .

$${let}\:{give}\:{f}\left({x}\right)=\:{e}^{−{x}} \:{cosx}\:\:{and}\:\mathrm{2}\pi\:{periodic} \\ $$$$\left.\mathrm{1}\right)\:{developp}\:{f}\:{at}\:{fourier}\:{series} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=−\infty} ^{{n}=+\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{1}+{n}^{\mathrm{2}} }\:. \\ $$

Question Number 28825    Answers: 0   Comments: 0

let give f(x)= e^(−x) cosx prove that f(x)= Σ_(n=0) ^∞ ((((√2))^n )/(n!)) cos(((3nπ)/4)) x^n .

$${let}\:{give}\:{f}\left({x}\right)=\:{e}^{−{x}} \:{cosx}\:{prove}\:{that} \\ $$$${f}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{\left(\sqrt{\mathrm{2}}\right)^{{n}} }{{n}!}\:{cos}\left(\frac{\mathrm{3}{n}\pi}{\mathrm{4}}\right)\:{x}^{{n}} \:\:. \\ $$

Question Number 28824    Answers: 0   Comments: 0

by using residus theorem find the value of A_n = ∫_0 ^∞ (dx/(1+x^n )) with n integr and n≥2.

$${by}\:{using}\:{residus}\:{theorem}\:{find}\:{the}\:{value}\:{of} \\ $$$${A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{x}^{{n}} }\:\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{2}. \\ $$

Question Number 28823    Answers: 0   Comments: 0

find I = ∫_(−∞) ^(+∞) (((x−1)cosx)/(x^2 −2x+2))dx and J= ∫_(−∞) ^(+∞) (((x−1)sinx)/(x^2 −2x +2)) dx.

$${find}\:\:{I}\:=\:\int_{−\infty} ^{+\infty} \:\:\frac{\left({x}−\mathrm{1}\right){cosx}}{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}}{dx}\:{and} \\ $$$${J}=\:\int_{−\infty} ^{+\infty} \:\:\frac{\left({x}−\mathrm{1}\right){sinx}}{{x}^{\mathrm{2}} −\mathrm{2}{x}\:+\mathrm{2}}\:{dx}. \\ $$

Question Number 28821    Answers: 0   Comments: 0

find the value of ∫_0 ^(2π) ((4 cos(4θ))/(5−4cosθ)) dθ .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{\mathrm{4}\:{cos}\left(\mathrm{4}\theta\right)}{\mathrm{5}−\mathrm{4}{cos}\theta}\:{d}\theta\:. \\ $$

Question Number 28820    Answers: 0   Comments: 0

find the value of ∫_0 ^1 ((ln(1−(t^2 /4)))/t^2 )dt.

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left(\mathrm{1}−\frac{{t}^{\mathrm{2}} }{\mathrm{4}}\right)}{{t}^{\mathrm{2}} }{dt}. \\ $$

Question Number 28819    Answers: 0   Comments: 0

let give f(x)= ∫_0 ^1 ((ln(1−x^2 t^2 ))/t^2 )dt with ∣x∣<1 by using derivation under ∫ find the value of f(x).

$${let}\:{give}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} {t}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt}\:\:\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$${by}\:{using}\:{derivation}\:{under}\:\int\:\:{find}\:{the}\:{value}\:{of}\:{f}\left({x}\right). \\ $$

Question Number 28818    Answers: 0   Comments: 0

prove that (π/(4cos(((πα)/2))))=Σ_(p=0) ^∞ (((2p+1)(−1)^p )/((2p+1)^2 −α^2 )) α ∈R−Z.

$${prove}\:{that}\:\:\frac{\pi}{\mathrm{4}{cos}\left(\frac{\pi\alpha}{\mathrm{2}}\right)}=\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{\left(\mathrm{2}{p}+\mathrm{1}\right)\left(−\mathrm{1}\right)^{{p}} }{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} \:−\alpha^{\mathrm{2}} } \\ $$$$\alpha\:\in{R}−{Z}. \\ $$

Question Number 28817    Answers: 0   Comments: 0

let give f(x)=e^(iαx) 2π prriodic and α ∈R−Z developp f at fourier series.

$${let}\:{give}\:{f}\left({x}\right)={e}^{{i}\alpha{x}} \:\:\mathrm{2}\pi\:{prriodic}\:{and}\:\alpha\:\in{R}−{Z} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{series}. \\ $$

Question Number 28816    Answers: 0   Comments: 0

find the value of I= ∫_0 ^π (dθ/(1+cos^4 θ)) .

$${find}\:{the}\:{value}\:{of}\:\:{I}=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{d}\theta}{\mathrm{1}+{cos}^{\mathrm{4}} \theta}\:. \\ $$

Question Number 28815    Answers: 1   Comments: 0

find the value of ∫_0 ^π (dx/(2cos^2 x +sin^2 x)) .

$${find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{2}{cos}^{\mathrm{2}} {x}\:+{sin}^{\mathrm{2}} {x}}\:. \\ $$

Question Number 28814    Answers: 0   Comments: 2

find Σ_(n=1) ^∞ (1/(1^3 +2^3 +...+n^3 )) .

$${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{3}} \:+\mathrm{2}^{\mathrm{3}} +...+{n}^{\mathrm{3}} }\:. \\ $$

Question Number 28813    Answers: 0   Comments: 0

let give F(t)=∫_0 ^∞ ((sin(x^2 ))/x^2 ) e^(−tx^2 ) dx with t>0 find (dF/dt)(t).

$${let}\:{give}\:{F}\left({t}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }\:{e}^{−{tx}^{\mathrm{2}} } {dx}\:\:{with}\:{t}>\mathrm{0} \\ $$$${find}\:\:\frac{{dF}}{{dt}}\left({t}\right). \\ $$$$ \\ $$

Question Number 28812    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ (((1−e^(−x) )sinx)/x^2 )dx

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\left(\mathrm{1}−{e}^{−{x}} \right){sinx}}{{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 28811    Answers: 0   Comments: 1

find ∫_0 ^∞ ln(1+e^(−xt) )dx with t>0 then give the value of ∫_0 ^∞ ln(1+e^(−x) )dx.

$${find}\:\int_{\mathrm{0}} ^{\infty} {ln}\left(\mathrm{1}+{e}^{−{xt}} \right){dx}\:{with}\:{t}>\mathrm{0}\:{then}\:{give}\:{the}\:{value}\:{of} \\ $$$$\int_{\mathrm{0}} ^{\infty} {ln}\left(\mathrm{1}+{e}^{−{x}} \right){dx}. \\ $$

Question Number 28808    Answers: 2   Comments: 0

Question Number 28806    Answers: 1   Comments: 0

If n(A)=15 and n(B)=25, (a) What are the greatest and least values of n(AuB)? (b) What are the greatest and least value of n(AnB)? (c) Draw Venn diagrams to illustrate the four situations in (a) and (b) above

$$\mathrm{If}\:\mathrm{n}\left(\mathrm{A}\right)=\mathrm{15}\:\mathrm{and}\:\mathrm{n}\left(\mathrm{B}\right)=\mathrm{25},\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{and}\:\mathrm{least}\:\mathrm{values}\:\mathrm{of}\:\mathrm{n}\left(\mathrm{AuB}\right)? \\ $$$$\left(\mathrm{b}\right)\:\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{and}\:\mathrm{least}\:\mathrm{value}\:\mathrm{of}\:\mathrm{n}\left(\mathrm{AnB}\right)? \\ $$$$\left(\mathrm{c}\right)\:\mathrm{Draw}\:\mathrm{Venn}\:\mathrm{diagrams}\:\mathrm{to}\:\mathrm{illustrate}\:\mathrm{the}\:\mathrm{four}\: \\ $$$$\:\:\:\:\:\:\:\mathrm{situations}\:\mathrm{in}\:\left(\mathrm{a}\right)\:\mathrm{and}\:\left(\mathrm{b}\right)\:\mathrm{above} \\ $$

  Pg 1800      Pg 1801      Pg 1802      Pg 1803      Pg 1804      Pg 1805      Pg 1806      Pg 1807      Pg 1808      Pg 1809   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com