Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1805
Question Number 27379 Answers: 1 Comments: 1
$${let}\:{give}\:{f}\left({x}\right)=\:\:\int_{{x}} ^{\mathrm{2}{x}} \:\:\frac{{dt}}{{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:\:{calculate}\:{f}^{'} \left({x}\right). \\ $$
Question Number 27376 Answers: 0 Comments: 2
Question Number 27365 Answers: 0 Comments: 0
Question Number 27345 Answers: 0 Comments: 1
$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{x}−\mathrm{1}} }{{e}^{{t}} −\mathrm{1}}{dt}\:\:=\xi\left({x}\right)\Gamma\left({x}\right) \\ $$$${with}\:\xi\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\propto} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:\:{and}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt} \\ $$$$\left(\:{x}>\mathrm{1}\right) \\ $$
Question Number 27343 Answers: 1 Comments: 7
$${let}\:{give}\:{A}=\left(_{\mathrm{2}\:\:\:\:\:\:\:\mathrm{2}} ^{\mathrm{1}\:\:\:\:\:\:\mathrm{2}} \right)\:\:\:{find}\:\:{A}^{{n}} \:\:\:{and}\:\:{e}^{{A}} \\ $$$${and}\:\:{e}^{{tA}} \:\:\:\:\:\:.\:{we}\:{remind}\:{that}\:\:{e}^{{A}} =\:\sum_{} \:\frac{{A}^{{n}} }{{n}!} \\ $$
Question Number 27342 Answers: 0 Comments: 1
$${find}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} }{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:\:{interms}\:{ofx} \\ $$$${with}\:{x}\geqslant\mathrm{0}\:\:\:{and}\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{t}^{\mathrm{2}} } {dt}\:. \\ $$
Question Number 27341 Answers: 0 Comments: 0
$${prove}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({t}^{\mathrm{2}} \:+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)} {dt}\:{is}\:{convergeny} \\ $$$${and}\:{find}\:{its}\:{value}\:. \\ $$
Question Number 27335 Answers: 0 Comments: 1
$${if}\:\mathrm{2}\:{chords}\:{of}\:{ellipse}\:{have}\:{the}\:{same} \\ $$$${distance}\:{from}\:{the}\:{centre}\:{of}\:{ellipse} \\ $$$${and}\:{the}\:{eccentric}\:{angle}\:{of}\:{the}\:{end}\:{points}\:{of}\:{the}\:{chords} \\ $$$${are}\:{respectivly}\:\alpha\:\beta\:\gamma\:\delta\:{then}\:{prove}\:{that} \\ $$$$\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}×\mathrm{tan}\:\frac{\beta}{\mathrm{2}}×\mathrm{tan}\:\frac{\gamma}{\mathrm{2}}×\mathrm{tan}\:\frac{\delta}{\mathrm{2}}=\mathrm{1} \\ $$
Question Number 27334 Answers: 1 Comments: 0
$$\frac{\mathrm{q}_{\mathrm{1}} }{\mathrm{q}_{\mathrm{2}} }=\left(\frac{\mathrm{x}}{\mathrm{0}.\mathrm{8}−\mathrm{x}}\right)^{\mathrm{2}} \:\:\:\:;\:\boldsymbol{\mathrm{x}}=? \\ $$
Question Number 27332 Answers: 1 Comments: 1
Question Number 27328 Answers: 0 Comments: 1
Question Number 27327 Answers: 0 Comments: 4
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{2n}} }{\mathrm{1}+\mid\mathrm{x}\mid+\mathrm{x}^{\mathrm{4n}} } \\ $$
Question Number 27326 Answers: 1 Comments: 0
$${What}\:{is}\:{the}\:{relationship}\:{between} \\ $$$${the}\:{centre}\:{of}\:{gravity}\:{and}\:{the}\:{centre}\:{of} \\ $$$${mass}? \\ $$
Question Number 27321 Answers: 1 Comments: 1
Question Number 27751 Answers: 0 Comments: 0
$${what}\:{is}\:{relation}\:{between}\:{in} \\ $$$${tensity}\:{of}\:{diffraction}\:{anx} \\ $$$${slit}\:{width} \\ $$
Question Number 27309 Answers: 1 Comments: 0
$${find}\:{the}\:{value}\:\:{of}\:\:\int_{\mathrm{0}} ^{\propto} \:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}\: \\ $$
Question Number 27303 Answers: 1 Comments: 0
Question Number 27300 Answers: 3 Comments: 1
Question Number 27296 Answers: 1 Comments: 1
$$\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{3}{A}}{\mathrm{sin}^{\mathrm{2}} {A}}\:−\:\frac{\mathrm{cos}^{\mathrm{2}} \mathrm{3}{A}}{\mathrm{cos}^{\mathrm{2}} {A}}\:=\: \\ $$
Question Number 27295 Answers: 0 Comments: 1
$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integral} \\ $$$$\underset{\:\mathrm{0}} {\overset{\pi} {\int}}\:\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} −\mathrm{2}{a}\:\mathrm{cos}\:{x}+\mathrm{1}}\:{dx}\:\:\left({a}<\:\mathrm{1}\right)\:\mathrm{is} \\ $$
Question Number 27294 Answers: 0 Comments: 1
$$\underset{\mathrm{1}/{e}} {\overset{\mathrm{tan}\:{x}} {\int}}\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:+\:\underset{\mathrm{1}/{e}} {\overset{\mathrm{cot}\:{x}} {\int}}\:\frac{\mathrm{1}}{{t}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:{dt}\:= \\ $$
Question Number 27293 Answers: 1 Comments: 0
$${L}^{−\mathrm{1}} \left(\frac{{s}^{\mathrm{3}} }{{s}^{\mathrm{4}} +\mathrm{4}}\right)=? \\ $$
Question Number 27287 Answers: 0 Comments: 1
Question Number 27283 Answers: 0 Comments: 0
Question Number 27282 Answers: 0 Comments: 1
$$\int{log}\left(\mathrm{2}+{x}^{\mathrm{2}} \right){dx} \\ $$
Question Number 27281 Answers: 1 Comments: 1
$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\:\left({x}^{\mathrm{2}} +\mathrm{cos}\:{x}\right)\:\mathrm{log}\:\left(\frac{\mathrm{2}+{x}}{\mathrm{2}−{x}}\right){dx}\:=\:\mathrm{0} \\ $$
Pg 1800 Pg 1801 Pg 1802 Pg 1803 Pg 1804 Pg 1805 Pg 1806 Pg 1807 Pg 1808 Pg 1809
Terms of Service
Privacy Policy
Contact: info@tinkutara.com