let give B(x,y)= ∫_0 ^1 u^(x−1) (1−u)^(y−1) du and (beta function)
and Γ(x) =∫_0 ^∞ u^(x−1) e^(−u) du (x>0)(gamma function of euler)
1) prove that Γ(x)= 2∫_0 ^∞ u^(2x−1) e^(−u^2 ) du .
2) prove that B(x,y) = ((Γ(x).Γ(y))/(Γ(x+y))) .
let give the polynomial p(x)=(x+1)^n −(x−1)^n with n
from N^∗
1) give the factorisation of p(x) inside C[x]
2) prove that Π_(k=0) ^(n−1) cotan(((kπ)/(2p+1)))=(1/(√(2p+1)))