Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1802
Question Number 29611 Answers: 0 Comments: 4
Question Number 29601 Answers: 0 Comments: 0
Question Number 29607 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{of}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{sequence} \\ $$$$\left(\mathrm{i}\right)\:\:\left\{\frac{\mathrm{n}\:−\:\mathrm{1}}{\mathrm{n}}\right\}_{\mathrm{n}\:=\:\mathrm{1}} ^{\infty} \:\:\:\:\:\:\:\:\left(\mathrm{ii}\right)\:\:\:\left\{\frac{\mathrm{1}}{\sqrt[{\mathrm{n}}]{\mathrm{2}}}\right\}_{\mathrm{n}\:=\:\mathrm{1}} ^{\infty} \:\:\:\:\:\:\left(\mathrm{iii}\right)\:\:\:\:\left\{\frac{\mathrm{n}\:+\:\mathrm{1}}{\mathrm{n}}\right\}_{\mathrm{n}\:=\:\mathrm{1}} ^{\infty} \\ $$
Question Number 29581 Answers: 1 Comments: 0
$${Let}\:{x}\:=\:\mathrm{4}{sin}^{\mathrm{2}} \mathrm{10}^{{o}} +\mathrm{4}{sin}^{\mathrm{2}} \mathrm{50}^{{o}} {cos}\mathrm{20}^{{o}} +{cos}\mathrm{80}^{{o}} \\ $$$${and}\:{y}\:=\:{cos}^{\mathrm{2}} \:\frac{\pi}{\mathrm{5}}+{cos}^{\mathrm{2}} \frac{\mathrm{2}\pi}{\mathrm{15}}+{cos}^{\mathrm{2}} \frac{\mathrm{8}\pi}{\mathrm{15}}. \\ $$$${find}\:{x}+{y}\:? \\ $$
Question Number 29687 Answers: 1 Comments: 4
Question Number 29592 Answers: 0 Comments: 0
$${y}'={xy}^{\mathrm{2}} +\mathrm{2}{y}+\mathrm{1} \\ $$
Question Number 29574 Answers: 0 Comments: 2
$$\int{x}^{\mathrm{6}} −\mathrm{1}/{x}^{\mathrm{2}} −\mathrm{1}{dx} \\ $$
Question Number 29573 Answers: 0 Comments: 2
$${derive}\:{the}\:{equation}\:{of}\:{a}\:{chain} \\ $$$${of}\:{length}\:{l}\:{mass}\:{m}\:{hanging} \\ $$$${between}\:{two}\:{points}\:{x}\:{distance} \\ $$$${apart}. \\ $$
Question Number 29559 Answers: 1 Comments: 6
Question Number 29554 Answers: 0 Comments: 1
$$\left.{l}\left.{et}\:{give}\:{f}\left({x}\right)=\:{x}^{\mathrm{2}} {cos}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\:{if}\:{x}\in\right]\mathrm{0},\mathrm{1}\right]\:{but}\:{its}\:{derivative}\:{f}^{'} \\ $$$$\left.{i}\left.{s}\:{not}\:{integrable}\:{on}\:\right]\mathrm{0},\mathrm{1}\right]. \\ $$
Question Number 29553 Answers: 0 Comments: 0
$${let}\:{put}\:\:{I}\left({x}\right)=\:\int_{{x}} ^{+\infty} \:\frac{{sin}^{\mathrm{3}} {t}}{{t}^{\mathrm{2}} }{dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$${find}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:{I}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}^{\mathrm{3}} {t}}{{t}^{\mathrm{2}} }{dt}\:. \\ $$
Question Number 29552 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\sqrt{{x}+\mathrm{1}}\:−\mathrm{1}}{{x}\left({x}+\mathrm{1}\right)}{dx}\:. \\ $$
Question Number 29551 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{arctan}\left(\mathrm{2}{x}\right)−{arctanx}}{{x}}{dx}. \\ $$
Question Number 29550 Answers: 1 Comments: 0
Question Number 29541 Answers: 0 Comments: 4
Question Number 29536 Answers: 1 Comments: 5
$${Find}\:{eccentricity}\:{of}\:{the}\:{ellipse} \\ $$$$\mathrm{7}{x}^{\mathrm{2}} +\mathrm{7}{y}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{10}{x}−\mathrm{10}{y}−\mathrm{7}=\mathrm{0}\:? \\ $$
Question Number 29522 Answers: 1 Comments: 7
Question Number 29520 Answers: 1 Comments: 0
$$\mathrm{to}\:\mathrm{make}\:\mathrm{an}\:\mathrm{open}\:\mathrm{fish}\:\mathrm{tank}\:\mathrm{a}\:\mathrm{glass}\:\mathrm{sheet}\:\mathrm{of}\: \\ $$$$\mathrm{2mm}\:\mathrm{gauge}\:\mathrm{is}\:\mathrm{used}\:.\mathrm{the}\:\mathrm{outer}\:\mathrm{length} \\ $$$$,\mathrm{breadth}\:\mathrm{and}\:\mathrm{height}\:\mathrm{are}\:\mathrm{60}.\mathrm{4}\:,\:\mathrm{40}.\mathrm{4},\: \\ $$$$\mathrm{40}.\mathrm{2}\:\mathrm{respectively}\:.\mathrm{how}\:\mathrm{much}\:\mathrm{maximum} \\ $$$$\mathrm{volume}\:\mathrm{of}\:\mathrm{water}\:\mathrm{will}\:\mathrm{be}\:\mathrm{contained}\:\mathrm{in}\:\mathrm{it}\:? \\ $$$$ \\ $$
Question Number 29517 Answers: 0 Comments: 1
$$\int\mathrm{x}^{\mathrm{6}} −\mathrm{1}/\mathrm{x}^{\mathrm{2}} +\mathrm{1} \\ $$
Question Number 29511 Answers: 0 Comments: 1
$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\:\:\:\frac{\left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}\right)!}\:. \\ $$
Question Number 29510 Answers: 0 Comments: 1
$${let}\:\:\:{w}_{{n}} =\:\frac{\mathrm{1}}{{n}}\left(\:\mathrm{1}\:+{e}^{\frac{\mathrm{1}}{{n}}} \:+{e}^{\frac{\mathrm{2}}{{n}}} \:+\:...\:{e}^{\frac{{n}−\mathrm{1}}{{n}}} \right)\:{find}\:{lim}_{{n}\rightarrow+\infty} {w}_{{n}} . \\ $$
Question Number 29509 Answers: 0 Comments: 1
$${find}\:{lim}_{{n}\rightarrow+\:\infty} \:\:\:\:\frac{{n}!}{\mathrm{2}^{{n}−\mathrm{1}} }\:. \\ $$
Question Number 29508 Answers: 0 Comments: 0
$${x}\:{and}\:{y}\:{are}\:{elements}\:{from}\:{R}\:{wich}\:{verify} \\ $$$$\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)\left({y}\:+\sqrt{{y}^{\mathrm{2}} +\mathrm{1}}\right)=\:\mathrm{1}\:\:{find}\:{x}+{y}\:. \\ $$
Question Number 29507 Answers: 0 Comments: 0
$${solve}\:\:\:\left[\sqrt{{x}}\:\right]\:−{x}+\mathrm{1}=\mathrm{0} \\ $$
Question Number 29506 Answers: 0 Comments: 1
$${le}\:{give}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{sin}\left(\left(\mathrm{2}{n}−\mathrm{1}\right){x}\right)}{{sinx}}{dx}\:{and}\:{B}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{sin}^{\mathrm{2}} \left({nx}\right)}{{sin}^{\mathrm{2}} {x}}{dx} \\ $$$$\left.\mathrm{1}\right){calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:{B}_{{n}+\mathrm{1}} −{B}_{{n}} =\:{A}_{{n}+\mathrm{1}} .{then}\:{find}\:{B}_{{n}} . \\ $$
Question Number 29505 Answers: 0 Comments: 3
$${let}\:{give}\:{u}_{{n}} =\:\:\sum_{{k}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} \:\mathrm{2}^{{k}} }\:\:{find}\:\:{lim}_{{n}\rightarrow\infty} {u}_{{n}} \:\:. \\ $$
Pg 1797 Pg 1798 Pg 1799 Pg 1800 Pg 1801 Pg 1802 Pg 1803 Pg 1804 Pg 1805 Pg 1806
Terms of Service
Privacy Policy
Contact: info@tinkutara.com