Find the direction cosines of two
lines which are connected by relation
l+m+n=0
mn−2nl−2lm=0
my solution
l=−(m+n)
mn+2n(m+n)+2(n+m)n=0
2m^2 +5mn+2n^2 =0
(2m+n)(m+2n)=0
m=−2n, or m=−(1/2)n
case 1: m=−2n
l=−(m+n)=−n
l^2 +m^2 +n^2 =1
6n^2 =1⇒n=±(1/(√6))
(l,m,n)=±(−(1/(√6)),−(2/(√6)),(1/(√6)))
case 2:m=−(1/2)n
l=−(1/2)n
l^2 +m^2 +n^2 =1
(n^2 /4)+(n^2 /4)+n^2 =1⇒n=±(2/(√6))
(l,m,n)=±(−(1/(√6)),−(1/(√6)),(2/(√6)))
so i get a total of 4 solution.
Books answer is 2 lines
((1/(√6)),(1/(√6)),−(2/(√6))) and ((1/(√6)),−(2/(√6)),(1/(√6)))
please help.
|