Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1801

Question Number 20238    Answers: 1   Comments: 1

∫(dx/(x^2 −x+1))

$$\int\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$

Question Number 20237    Answers: 0   Comments: 1

∫(e^(tan^(−1) x) /(1+x^2 ))dx

$$\int\frac{{e}^{\mathrm{tan}^{−\mathrm{1}} {x}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 20235    Answers: 0   Comments: 1

if t_((m+1)) =2t_((n+1)) so proof t_((3m+1)) =2t_((m+n+1) ) help please.........

$$ \\ $$$${if}\:\:\:\:\:\:\:\:{t}_{\left({m}+\mathrm{1}\right)} =\mathrm{2}{t}_{\left({n}+\mathrm{1}\right)} \\ $$$${so}\:{proof} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{t}_{\left(\mathrm{3}{m}+\mathrm{1}\right)} =\mathrm{2}{t}_{\left({m}+{n}+\mathrm{1}\right)\:\:\:\:\:\:} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{help}\:{please}......... \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 20230    Answers: 1   Comments: 5

Question Number 20217    Answers: 0   Comments: 1

Question Number 20205    Answers: 1   Comments: 0

find the sin^(−1) diferentiation

$${find}\:{the}\:{sin}^{−\mathrm{1}} \:{diferentiation} \\ $$

Question Number 20204    Answers: 0   Comments: 0

Question Number 20203    Answers: 0   Comments: 1

Question Number 20201    Answers: 2   Comments: 0

^4 (√(49 − 20(√6))) =

$$\:^{\mathrm{4}} \sqrt{\mathrm{49}\:−\:\mathrm{20}\sqrt{\mathrm{6}}}\:= \\ $$

Question Number 20200    Answers: 1   Comments: 0

Question Number 20198    Answers: 1   Comments: 0

Find exact form of cos (tan^(−1) ((1/2)))

$$\mathrm{Find}\:\mathrm{exact}\:\mathrm{form}\:\mathrm{of} \\ $$$$\mathrm{cos}\:\left(\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$

Question Number 20195    Answers: 1   Comments: 0

Question Number 20194    Answers: 0   Comments: 5

A plane is drawn through the midpoint of a diagonal of a cube perpendicular to the diagonal. Determine the area of the figure resulting from the section of the cube cut by this plane if the edge of the cube is equal to a.

$${A}\:{plane}\:{is}\:{drawn}\:{through}\:{the}\: \\ $$$${midpoint}\:{of}\:{a}\:{diagonal}\:{of}\:{a}\:{cube} \\ $$$${perpendicular}\:{to}\:{the}\:{diagonal}. \\ $$$${Determine}\:{the}\:{area}\:{of}\:{the}\:{figure} \\ $$$${resulting}\:{from}\:{the}\:{section}\:{of}\:{the} \\ $$$${cube}\:{cut}\:{by}\:{this}\:{plane}\:{if}\:{the}\:{edge} \\ $$$${of}\:{the}\:{cube}\:{is}\:{equal}\:{to}\:\boldsymbol{{a}}. \\ $$

Question Number 20192    Answers: 0   Comments: 0

t_1 =3, t_n =3t_(n−1) +2 ....n>1

$$ \\ $$$${t}_{\mathrm{1}} =\mathrm{3},\:{t}_{{n}} =\mathrm{3}{t}_{{n}−\mathrm{1}} +\mathrm{2}\:\:\:\:\:....{n}>\mathrm{1} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 20202    Answers: 0   Comments: 10

Is definite integral can have negative value? Because I think ∫_a ^b f(x) dx is total area below graph f(x) from x = a until x = b, so it can′t be negative

$$\mathrm{Is}\:\mathrm{definite}\:\mathrm{integral}\:\mathrm{can}\:\mathrm{have}\:\mathrm{negative}\:\mathrm{value}? \\ $$$$\mathrm{Because}\:\mathrm{I}\:\mathrm{think}\:\int_{{a}} ^{{b}} {f}\left({x}\right)\:{dx}\:\mathrm{is}\:\mathrm{total}\:\mathrm{area}\:\mathrm{below} \\ $$$$\mathrm{graph}\:{f}\left({x}\right)\:\mathrm{from}\:{x}\:=\:{a}\:\mathrm{until}\:{x}\:=\:{b},\:\mathrm{so}\:\mathrm{it}\:\mathrm{can}'\mathrm{t} \\ $$$$\mathrm{be}\:\mathrm{negative} \\ $$

Question Number 20182    Answers: 0   Comments: 0

Question Number 20187    Answers: 0   Comments: 1

t_n =(t_(n−1) /n^2 ), t_1 =3;t_2 ,t_3 ,(n≥2)

$${t}_{{n}} =\frac{{t}_{{n}−\mathrm{1}} }{{n}^{\mathrm{2}} },\:{t}_{\mathrm{1}} =\mathrm{3};{t}_{\mathrm{2}} ,{t}_{\mathrm{3}} ,\left({n}\geqslant\mathrm{2}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 20177    Answers: 0   Comments: 0

But ans is (1/(108))

$${But}\:{ans}\:{is}\:\frac{\mathrm{1}}{\mathrm{108}} \\ $$

Question Number 20174    Answers: 2   Comments: 0

(0.1^− )^2 {1−9(0.16^− )^2 }

$$\left(\mathrm{0}.\overset{−} {\mathrm{1}}\right)^{\mathrm{2}} \left\{\mathrm{1}−\mathrm{9}\left(\mathrm{0}.\mathrm{1}\overset{−} {\mathrm{6}}\right)^{\mathrm{2}} \right\} \\ $$

Question Number 20167    Answers: 1   Comments: 0

please solve it integrate with respect to x ∫((5x−2)/(3x^2 +2x+1))

$${please}\:{solve}\:{it} \\ $$$${integrate}\:{with}\:{respect}\:{to}\:{x} \\ $$$$\int\frac{\mathrm{5}{x}−\mathrm{2}}{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}} \\ $$

Question Number 20166    Answers: 1   Comments: 0

∫cosec^2 xdx

$$\int\mathrm{cosec}\:^{\mathrm{2}} {xdx} \\ $$

Question Number 20164    Answers: 1   Comments: 0

∫(e^(tan^(−1) x) /(1+x^2 ))

$$\int\frac{{e}^{\mathrm{tan}^{−\mathrm{1}} {x}} }{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$

Question Number 20157    Answers: 1   Comments: 1

Question Number 20156    Answers: 1   Comments: 0

Solve: inverse laplace. L^(−1) ((s/(s^(2 ) + 6s + 25)))

$$\mathrm{Solve}:\:\mathrm{inverse}\:\mathrm{laplace}.\:\:\:\:\mathrm{L}^{−\mathrm{1}} \left(\frac{\mathrm{s}}{\mathrm{s}^{\mathrm{2}\:} +\:\mathrm{6s}\:+\:\mathrm{25}}\right) \\ $$

Question Number 20149    Answers: 2   Comments: 1

Question Number 20162    Answers: 1   Comments: 0

Compute the volume of a solid bounded by a surface with equation (x^2 +y^2 +z^2 )^2 =a^3 x .

$${Compute}\:{the}\:{volume}\:{of}\:{a}\:{solid} \\ $$$${bounded}\:{by}\:{a}\:{surface}\:{with}\:{equation} \\ $$$$\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{\mathrm{2}} ={a}^{\mathrm{3}} {x}\:. \\ $$

  Pg 1796      Pg 1797      Pg 1798      Pg 1799      Pg 1800      Pg 1801      Pg 1802      Pg 1803      Pg 1804      Pg 1805   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com