Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1801
Question Number 28998 Answers: 0 Comments: 0
$${find}\:\int_{\gamma} \:\:\:\:\frac{{e}^{{z}} }{{z}\left({z}+\mathrm{1}\right)}{dz}\:{with}\:\gamma=\left\{{z}\in{C}/\:\mid{z}−\mathrm{1}\mid=\mathrm{2}\right\} \\ $$
Question Number 28997 Answers: 0 Comments: 1
$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\:\mathrm{2}+{e}^{{ix}} \right)}\:. \\ $$
Question Number 28996 Answers: 0 Comments: 0
$${find}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\:\frac{{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}\right)}{dx}. \\ $$
Question Number 28995 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}\left(\mathrm{2}{t}\right)}{\mathrm{3}−{cost}}\:{dt}. \\ $$
Question Number 28994 Answers: 0 Comments: 0
$${find}\:\:{A}_{{n}} =\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:\:{with}\:{n}\:{from}\:{N}\:{and}\:{n}\geqslant\mathrm{1}. \\ $$
Question Number 28993 Answers: 1 Comments: 0
$${L}\:{means}\:{laplacr}\:{trsnsform}\:{find}\:{L}\:\left({sin}\left({at}\right)\right) \\ $$$${and}\:{L}\left({cos}\left({at}\right)\right). \\ $$
Question Number 28992 Answers: 0 Comments: 0
$${L}\:{means}\:{laplace}\:{transform}\:{find}\:\:{L}\left({e}^{{at}} \right)\left({s}\right). \\ $$
Question Number 28991 Answers: 1 Comments: 1
$${prove}\:{that}\:{L}\left(\mathrm{1}\right)\left({s}\right)=\:\frac{\mathrm{1}}{{s}}\:\:{and}\:{L}\left({t}^{{n}} \right)\left({s}\right)=\:\frac{{n}!}{{s}^{{n}+\mathrm{1}} }\:.{L}\:{means} \\ $$$${laplace}\:{transform}. \\ $$
Question Number 28990 Answers: 0 Comments: 0
$${calculate}\:\int_{\gamma} \:\:\:\frac{{e}^{{z}} }{\left({z}−\mathrm{1}\right)\left({z}+\mathrm{3}\right)^{\mathrm{2}} }{dz}\:{with}\:\gamma\:{id}\:{the}\:{positif} \\ $$$${circle}\:\gamma=\left\{{z}\in{C}/\:\mid{z}\mid=\frac{\mathrm{3}}{\mathrm{2}}\right\}. \\ $$
Question Number 28989 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}^{\mathrm{2}} \left(\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} }{dx}. \\ $$
Question Number 28988 Answers: 0 Comments: 0
$${let}\:{give}\:\mathrm{0}<\alpha<\mathrm{1}\:{find}\:{in}\:{terms}\:{of}\:\alpha\:{the}\:{value}\:{of}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{{x}^{\alpha} \left(\mathrm{1}+{x}\right)}\:. \\ $$
Question Number 28987 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\frac{{dt}}{\left({a}+{bcost}\right)^{\mathrm{2}} }.{with}\:\:{a}>{b}>\mathrm{0}\:. \\ $$
Question Number 28986 Answers: 0 Comments: 0
$${let}\:{give}\:{a}>\mathrm{1}\:\:{find}\:\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{dt}}{{a}+{cost}}\:. \\ $$
Question Number 28985 Answers: 0 Comments: 0
$${let}\:{give}\:{I}_{{m},{a}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left({mx}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)}{dx} \\ $$$$\left.\mathrm{1}\right){verify}\:{that}\:{I}_{{m},\mathrm{1}} ={lim}_{{a}\rightarrow\mathrm{1}} \:{I}_{{m},{a}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{sin}\left({mx}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 28984 Answers: 0 Comments: 0
$${find}\:{F}\left(\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{4}} }\right)\:{F}\:{means}\:{fourier}\:{transform}. \\ $$
Question Number 28983 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\int_{−\infty} ^{+\infty} \:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\:\frac{{sinx}}{{x}}{dx}. \\ $$
Question Number 28982 Answers: 0 Comments: 0
$${fnd}\:{the}\:{value}\:{of}\:\prod_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{n}^{\mathrm{2}} +\mathrm{1}}{{n}^{\mathrm{2}} }\:\:. \\ $$
Question Number 28981 Answers: 1 Comments: 1
$${find}\:{the}\:{values}\:{of}\:\prod_{{n}=\mathrm{2}} ^{\infty} \left(\mathrm{1}−\frac{\mathrm{2}}{{n}\left({n}+\mathrm{1}\right)}\right)\:. \\ $$
Question Number 28980 Answers: 0 Comments: 0
$${prove}\:{that}\:{sin}\left(\pi{z}\right)=\pi{z}\:\prod_{{k}=\mathrm{1}} ^{\infty} \left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{{k}^{\mathrm{2}} }\right)\:\:{zfromC}. \\ $$
Question Number 29012 Answers: 0 Comments: 1
Question Number 28978 Answers: 0 Comments: 0
$${let}\:{give}\:{p}\:{from}\:{R}\:{study}\:{the}\:{convergence}\:{of} \\ $$$$\prod_{{k}=\mathrm{1}} ^{\infty} \:\left(\mathrm{1}+{k}^{−{p}} \right)\:. \\ $$
Question Number 28977 Answers: 0 Comments: 0
$${let}\:{give}\:{u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:{a}_{{k}} ^{\mathrm{2}} \:\:\:\:\:{with}\:\left({a}_{{k}} \right)\:{sequence}\:{of}\:{reals}/{a}_{{k}>\mathrm{0}} \\ $$$${and}\:{v}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{a}_{{k}} }{{k}}\:.\:{prove}\:{that}\:{u}_{{n}} {converges}\Rightarrow\left({v}_{{n}} \right){converges} \\ $$
Question Number 28976 Answers: 0 Comments: 0
$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cosx}}{{e}^{{x}} +{e}^{−{x}} }{dx}. \\ $$
Question Number 28975 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{7}} }{dx}. \\ $$
Question Number 28960 Answers: 1 Comments: 1
Question Number 28954 Answers: 0 Comments: 0
$${please}\:{solve}\:\mathrm{4},\mathrm{5},\mathrm{6} \\ $$$$ \\ $$
Pg 1796 Pg 1797 Pg 1798 Pg 1799 Pg 1800 Pg 1801 Pg 1802 Pg 1803 Pg 1804 Pg 1805
Terms of Service
Privacy Policy
Contact: info@tinkutara.com