Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1800

Question Number 29168    Answers: 0   Comments: 1

Question Number 29167    Answers: 0   Comments: 1

let give S_n = Σ_(k=1) ^(n−1) sin(((kπ)/n)) find lim_(n→+∞) (S_n /n) .

$${let}\:{give}\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} {sin}\left(\frac{{k}\pi}{{n}}\right)\:\:{find}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{{S}_{{n}} }{{n}}\:\:. \\ $$

Question Number 29166    Answers: 0   Comments: 1

simlify S_n = Σ_(k=1) ^n k(1+i)^(k−1) .

$${simlify}\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{k}\left(\mathrm{1}+{i}\right)^{{k}−\mathrm{1}} \:\:\:\:. \\ $$

Question Number 29165    Answers: 0   Comments: 1

give the factorization inside C[x] for p(x)= x^4 −((1−i(√3))/2) .

$${give}\:{the}\:{factorization}\:{inside}\:{C}\left[{x}\right]\:{for} \\ $$$${p}\left({x}\right)=\:\:{x}^{\mathrm{4}} \:−\frac{\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:. \\ $$

Question Number 29164    Answers: 0   Comments: 1

let put α= 1+i(√3) simlify A_n = Σ_(k=0) ^n α^k .

$${let}\:{put}\:\alpha=\:\mathrm{1}+{i}\sqrt{\mathrm{3}}\:\:\:\:\:{simlify} \\ $$$${A}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\alpha^{{k}} \:\:\:. \\ $$

Question Number 29163    Answers: 0   Comments: 0

let give (n,p) from N^2 and 1≤p≤n prove that Σ_(k=0) ^p C_n ^k C_(n−k) ^(p−k) ==2^p C_n ^p .

$${let}\:{give}\:\left({n},{p}\right)\:{from}\:{N}^{\mathrm{2}} \:{and}\:\mathrm{1}\leqslant{p}\leqslant{n}\:{prove}\:{that}\: \\ $$$$\sum_{{k}=\mathrm{0}} ^{{p}} \:{C}_{{n}} ^{{k}} \:{C}_{{n}−{k}} ^{{p}−{k}} ==\mathrm{2}^{{p}} \:\:{C}_{{n}} ^{{p}} . \\ $$$$ \\ $$

Question Number 29162    Answers: 0   Comments: 1

find find I= ∫_1 ^3 ((∣x−2∣)/((x^2 −4x)^2 ))dx .

$${find}\:\:{find}\:{I}=\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\:\:\frac{\mid{x}−\mathrm{2}\mid}{\left({x}^{\mathrm{2}} −\mathrm{4}{x}\right)^{\mathrm{2}} }{dx}\:. \\ $$

Question Number 29161    Answers: 1   Comments: 1

let give f(x)=(√(x−1+2(√(x−2)))) +(√(x−1−2(√(x−2)))) 1) simlify f(x) 2) solve inside N^2 the equation f(x)=y.

$${let}\:{give}\:{f}\left({x}\right)=\sqrt{{x}−\mathrm{1}+\mathrm{2}\sqrt{{x}−\mathrm{2}}}\:\:+\sqrt{{x}−\mathrm{1}−\mathrm{2}\sqrt{{x}−\mathrm{2}}} \\ $$$$\left.\mathrm{1}\right)\:{simlify}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{solve}\:{inside}\:\mathbb{N}^{\mathrm{2}} \:{the}\:{equation}\:{f}\left({x}\right)={y}. \\ $$

Question Number 29149    Answers: 1   Comments: 0

(u_n )_n is arithmetic progression/ u_n = u_0 +nr find S_n = Σ_(k=0) ^n u_k ^2 .

$$\left({u}_{{n}} \right)_{{n}} \:\:{is}\:{arithmetic}\:{progression}/\:{u}_{{n}} =\:{u}_{\mathrm{0}} +{nr}\: \\ $$$${find}\:{S}_{{n}} =\:\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{u}_{{k}} ^{\mathrm{2}} .\: \\ $$

Question Number 29148    Answers: 0   Comments: 1

let give the sequence (u_n ) /u_0 =1 and u_1 =2 and ∀ n ∈N 2u_(n+2) =3 u_(n+1) −u_n . let give the sequence (v_n ) / v_n = u_(n+1) −u_n . 1) prove that (v_n ) is geometric .find v_n in terms of n 2) find u_n in terms of n.

$${let}\:{give}\:{the}\:{sequence}\:\left({u}_{{n}} \right)\:/{u}_{\mathrm{0}} =\mathrm{1}\:{and}\:{u}_{\mathrm{1}} =\mathrm{2}\:{and} \\ $$$$\forall\:{n}\:\in{N}\:\:\:\mathrm{2}{u}_{{n}+\mathrm{2}} =\mathrm{3}\:{u}_{{n}+\mathrm{1}} −{u}_{{n}} .\:{let}\:{give}\:{the}\:{sequence}\:\left({v}_{{n}} \right)\:/ \\ $$$${v}_{{n}} =\:{u}_{{n}+\mathrm{1}} −{u}_{{n}} \:. \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\left({v}_{{n}} \right)\:{is}\:{geometric}\:.{find}\:{v}_{{n}} {in}\:{terms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{u}_{{n}} \:{in}\:{terms}\:{of}\:{n}. \\ $$

Question Number 29140    Answers: 0   Comments: 6

Find no. of rational roots of f(x)= 2x^(98) +3x^(97) +2x^(96) +.....+2x+3=0.

$${Find}\:{no}.\:{of}\:{rational}\:{roots}\:{of}\:{f}\left({x}\right)= \\ $$$$\mathrm{2}{x}^{\mathrm{98}} +\mathrm{3}{x}^{\mathrm{97}} +\mathrm{2}{x}^{\mathrm{96}} +.....+\mathrm{2}{x}+\mathrm{3}=\mathrm{0}. \\ $$

Question Number 29138    Answers: 0   Comments: 4

Find number of polynomials p(x) with intgral coefficients such that p(1)=2, p(3)=1

$${Find}\:{number}\:{of}\:{polynomials}\:{p}\left({x}\right) \\ $$$${with}\:{intgral}\:{coefficients}\:{such}\:{that} \\ $$$${p}\left(\mathrm{1}\right)=\mathrm{2},\:{p}\left(\mathrm{3}\right)=\mathrm{1} \\ $$

Question Number 29134    Answers: 0   Comments: 3

Question Number 29131    Answers: 1   Comments: 2

If tan^2 atan^2 b+tan^2 btan^2 c+tan^2 ctan^2 a +2tan^2 atan^2 btan^2 c=1 then find the value of: sin^2 a+sin^2 b+sin^2 c

$${If}\:\mathrm{tan}^{\mathrm{2}} {a}\mathrm{tan}\:^{\mathrm{2}} {b}+\mathrm{tan}^{\mathrm{2}} {b}\mathrm{tan}\:^{\mathrm{2}} {c}+\mathrm{tan}^{\mathrm{2}} {c}\mathrm{tan}\:^{\mathrm{2}} {a} \\ $$$$+\mathrm{2tan}^{\mathrm{2}} {a}\mathrm{tan}^{\mathrm{2}} {b}\mathrm{tan}\:^{\mathrm{2}} {c}=\mathrm{1} \\ $$$${then}\:{find}\:{the}\:{value}\:{of}: \\ $$$$\mathrm{sin}\:^{\mathrm{2}} {a}+\mathrm{sin}\:^{\mathrm{2}} {b}+\mathrm{sin}\:^{\mathrm{2}} {c} \\ $$

Question Number 29136    Answers: 0   Comments: 1

Question Number 29144    Answers: 1   Comments: 0

A body moves in a circular orbit of radius 4R round the earth. Express the acceleration of the free fall due to gravity of the body in terms of g R = radius if the earth g = acceleration due to gravity

$$\mathrm{A}\:\mathrm{body}\:\mathrm{moves}\:\mathrm{in}\:\mathrm{a}\:\mathrm{circular}\:\mathrm{orbit}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{4R}\:\mathrm{round}\:\mathrm{the}\:\mathrm{earth}.\:\:\mathrm{Express}\:\mathrm{the}\:\mathrm{acceleration} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{free}\:\mathrm{fall}\:\mathrm{due}\:\mathrm{to}\:\mathrm{gravity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{body}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{g} \\ $$$$\mathrm{R}\:=\:\mathrm{radius}\:\mathrm{if}\:\mathrm{the}\:\mathrm{earth} \\ $$$$\mathrm{g}\:=\:\mathrm{acceleration}\:\mathrm{due}\:\mathrm{to}\:\mathrm{gravity} \\ $$

Question Number 29159    Answers: 0   Comments: 1

let give f(x)=2(√(x−1)) +3x find f^(−1) (x) and (f^(−1) )^′ (x) .

$${let}\:{give}\:{f}\left({x}\right)=\mathrm{2}\sqrt{{x}−\mathrm{1}}\:+\mathrm{3}{x}\:\:\:{find}\:{f}^{−\mathrm{1}} \left({x}\right)\:{and}\:\left({f}^{−\mathrm{1}} \right)^{'} \left({x}\right)\:. \\ $$

Question Number 29158    Answers: 0   Comments: 1

find lim_(x→1) (((√(3+(√(2x−1)))) −2)/((√(2+(√(3x+1)))) −(√(x+3)))) .

$${find}\:{lim}_{{x}\rightarrow\mathrm{1}} \frac{\sqrt{\mathrm{3}+\sqrt{\mathrm{2}{x}−\mathrm{1}}}\:−\mathrm{2}}{\sqrt{\mathrm{2}+\sqrt{\mathrm{3}{x}+\mathrm{1}}}\:\:−\sqrt{{x}+\mathrm{3}}}\:\:. \\ $$

Question Number 29157    Answers: 1   Comments: 1

find lim_(x→1) (((x−2)^(1/3) +(1−x+x^2 )^(1/3) )/(x^2 −1)) .

$${find}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\:\frac{\left({x}−\mathrm{2}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:\:+\left(\mathrm{1}−{x}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} }{{x}^{\mathrm{2}} −\mathrm{1}}\:. \\ $$

Question Number 29156    Answers: 0   Comments: 2

find lim_(x→0^+ ) x[(1/x)] and lim_(x→0^+ ) x^2 [ (1/x)] . [α] is the greatest integr inferior or equal to α.

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:{x}\left[\frac{\mathrm{1}}{{x}}\right]\:\:{and}\:\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:{x}^{\mathrm{2}} \:\left[\:\frac{\mathrm{1}}{{x}}\right]\:\:. \\ $$$$\left[\alpha\right]\:{is}\:{the}\:{greatest}\:{integr}\:{inferior}\:{or}\:{equal}\:{to}\:\alpha. \\ $$

Question Number 29123    Answers: 0   Comments: 0

Question Number 29118    Answers: 1   Comments: 6

Question Number 29116    Answers: 1   Comments: 0

Find the area of the region R bounded by the curve y = cosh(x), the line x = log_e (2) and the coordinate axis . Find also the volume obtained when R is rotated completely about the x − axis.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{region}\:\boldsymbol{\mathrm{R}}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{the}\:\mathrm{curve}\:\:\mathrm{y}\:=\:\mathrm{cosh}\left(\mathrm{x}\right),\:\:\mathrm{the}\:\mathrm{line}\:\:\mathrm{x}\:=\:\mathrm{log}_{\mathrm{e}} \left(\mathrm{2}\right) \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{coordinate}\:\mathrm{axis}\:.\:\:\mathrm{Find}\:\mathrm{also}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{obtained}\:\mathrm{when}\:\boldsymbol{\mathrm{R}}\:\mathrm{is}\:\mathrm{rotated}\: \\ $$$$\mathrm{completely}\:\mathrm{about}\:\mathrm{the}\:\:\mathrm{x}\:−\:\mathrm{axis}. \\ $$

Question Number 29111    Answers: 1   Comments: 1

cos^3 x.sin^2 x=1/16(2cos x−cos 3x−cos 5x)

$$\mathrm{cos}^{\mathrm{3}} {x}.\mathrm{sin}\:^{\mathrm{2}} {x}=\mathrm{1}/\mathrm{16}\left(\mathrm{2cos}\:{x}−\mathrm{cos}\:\mathrm{3}{x}−\mathrm{cos}\:\mathrm{5}{x}\right) \\ $$

Question Number 29107    Answers: 1   Comments: 1

Question Number 29105    Answers: 0   Comments: 2

Show that: ∫_(−1) ^( 1) (dx/(5 cosh(x) + 13 sinh(x))) = (1/2) log_e (((15e − 10)/(3e + 2)))

$$\mathrm{Show}\:\mathrm{that}:\:\:\:\int_{−\mathrm{1}} ^{\:\:\:\mathrm{1}} \:\:\:\:\:\:\:\frac{\mathrm{dx}}{\mathrm{5}\:\mathrm{cosh}\left(\mathrm{x}\right)\:+\:\mathrm{13}\:\mathrm{sinh}\left(\mathrm{x}\right)}\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{log}_{\mathrm{e}} \left(\frac{\mathrm{15e}\:−\:\mathrm{10}}{\mathrm{3e}\:+\:\mathrm{2}}\right)\: \\ $$

  Pg 1795      Pg 1796      Pg 1797      Pg 1798      Pg 1799      Pg 1800      Pg 1801      Pg 1802      Pg 1803      Pg 1804   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com