Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 18
Question Number 223988 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{DE}\:\mathrm{using}\:\mathrm{the}\:\mathrm{method}\:\mathrm{of}\:\mathrm{Frobenius}\::\: \\ $$$$\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\mathrm{y}''−\mathrm{2xy}'+\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\mathrm{y}=\mathrm{0} \\ $$
Question Number 223978 Answers: 0 Comments: 5
$${Guys}\:{my}\:{exams}\:{are}\:{starting} \\ $$$${from}\:{today}.{Wish}\:{me}\:{luck}! \\ $$
Question Number 223965 Answers: 2 Comments: 0
Question Number 223964 Answers: 3 Comments: 0
Question Number 223962 Answers: 2 Comments: 1
Question Number 223958 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{x}\:\mathrm{sinh}\left({x}\right)}{\mathrm{1}+\mathrm{cosh}^{\mathrm{2}} \left({x}\right)}\:\mathrm{d}{x} \\ $$$$ \\ $$
Question Number 223954 Answers: 2 Comments: 0
Question Number 224003 Answers: 2 Comments: 1
Question Number 223935 Answers: 3 Comments: 1
Question Number 223933 Answers: 1 Comments: 0
$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}+\mathrm{1}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$
Question Number 223928 Answers: 3 Comments: 1
Question Number 223923 Answers: 1 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{3}} }{dx} \\ $$
Question Number 223920 Answers: 1 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{x}^{\mathrm{2}} }{{sin}^{\mathrm{2}} {x}}{dx} \\ $$
Question Number 223917 Answers: 0 Comments: 0
Question Number 223908 Answers: 1 Comments: 0
Question Number 223901 Answers: 1 Comments: 2
Question Number 223889 Answers: 0 Comments: 2
Question Number 223887 Answers: 0 Comments: 2
Question Number 223881 Answers: 2 Comments: 0
Question Number 223865 Answers: 1 Comments: 1
Question Number 223858 Answers: 1 Comments: 0
Question Number 223851 Answers: 1 Comments: 0
Question Number 223847 Answers: 3 Comments: 1
Question Number 223839 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \:\:\left[\mathrm{Struve}\boldsymbol{\mathrm{H}}_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{\:^{\:^{\:} } } \left({z}\right)−\mathrm{Bessel}{Y}_{−\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)\right]\:\mathrm{d}{z}=?? \\ $$
Question Number 223836 Answers: 1 Comments: 0
Question Number 223826 Answers: 2 Comments: 1
Pg 13 Pg 14 Pg 15 Pg 16 Pg 17 Pg 18 Pg 19 Pg 20 Pg 21 Pg 22
Terms of Service
Privacy Policy
Contact: info@tinkutara.com