Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1799

Question Number 20412    Answers: 0   Comments: 3

A block is placed on a rough horizontal surface. The minimum force required to slide the block is

$$\mathrm{A}\:\mathrm{block}\:\mathrm{is}\:\mathrm{placed}\:\mathrm{on}\:\mathrm{a}\:\mathrm{rough}\:\mathrm{horizontal} \\ $$$$\mathrm{surface}.\:\mathrm{The}\:\mathrm{minimum}\:\mathrm{force}\:\mathrm{required} \\ $$$$\mathrm{to}\:\mathrm{slide}\:\mathrm{the}\:\mathrm{block}\:\mathrm{is} \\ $$

Question Number 20411    Answers: 1   Comments: 0

A stone of weight W is thrown straight up from the ground with an initial speed u. if a drag force of constant magnitude f acts on the stone through out its flight, the speed of stone just before reaching the ground is

$$\mathrm{A}\:\mathrm{stone}\:\mathrm{of}\:\mathrm{weight}\:{W}\:\mathrm{is}\:\mathrm{thrown}\:\mathrm{straight} \\ $$$$\mathrm{up}\:\mathrm{from}\:\mathrm{the}\:\mathrm{ground}\:\mathrm{with}\:\mathrm{an}\:\mathrm{initial} \\ $$$$\mathrm{speed}\:{u}.\:\mathrm{if}\:\mathrm{a}\:\mathrm{drag}\:\mathrm{force}\:\mathrm{of}\:\mathrm{constant} \\ $$$$\mathrm{magnitude}\:{f}\:\mathrm{acts}\:\mathrm{on}\:\mathrm{the}\:\mathrm{stone}\:\mathrm{through} \\ $$$$\mathrm{out}\:\mathrm{its}\:\mathrm{flight},\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{stone}\:\mathrm{just} \\ $$$$\mathrm{before}\:\mathrm{reaching}\:\mathrm{the}\:\mathrm{ground}\:\mathrm{is} \\ $$

Question Number 20409    Answers: 1   Comments: 1

Calculate the force (F) required to cause the block of mass m_1 = 20 kg just to slide under the block of mass m_2 = 10 kg [coefficient of friction μ = 0.25 for all surfaces]

$${Calculate}\:{the}\:{force}\:\left({F}\right)\:{required}\:{to} \\ $$$${cause}\:{the}\:{block}\:{of}\:{mass}\:{m}_{\mathrm{1}} \:=\:\mathrm{20}\:{kg} \\ $$$${just}\:{to}\:{slide}\:{under}\:{the}\:{block}\:{of}\:{mass} \\ $$$${m}_{\mathrm{2}} \:=\:\mathrm{10}\:{kg}\:\left[{coefficient}\:{of}\:{friction}\:\mu\right. \\ $$$$\left.=\:\mathrm{0}.\mathrm{25}\:{for}\:{all}\:{surfaces}\right] \\ $$

Question Number 20404    Answers: 0   Comments: 0

∫_0 ^( π/4) tan(θ)ln(1−tan(θ))dθ=?

$$\int_{\mathrm{0}} ^{\:\pi/\mathrm{4}} {tan}\left(\theta\right){ln}\left(\mathrm{1}−{tan}\left(\theta\right)\right){d}\theta=? \\ $$

Question Number 20390    Answers: 1   Comments: 0

∫sin^5 xdx

$$\int\mathrm{sin}\:^{\mathrm{5}} {xdx} \\ $$

Question Number 20389    Answers: 1   Comments: 0

∫sin^4 xdx

$$\int\mathrm{sin}\:^{\mathrm{4}} {xdx} \\ $$

Question Number 20388    Answers: 1   Comments: 0

∫((2sin x+3cos x)/(7sin x−2cos x))

$$\int\frac{\mathrm{2sin}\:{x}+\mathrm{3cos}\:{x}}{\mathrm{7sin}\:{x}−\mathrm{2cos}\:{x}} \\ $$

Question Number 20387    Answers: 2   Comments: 0

∫sin pxcos qxdx

$$\int\mathrm{sin}\:{px}\mathrm{cos}\:{qxdx} \\ $$

Question Number 20386    Answers: 1   Comments: 0

∫(√(1−a^2 x^2 dx))

$$\int\sqrt{\mathrm{1}−{a}^{\mathrm{2}} {x}^{\mathrm{2}} {dx}} \\ $$

Question Number 20385    Answers: 1   Comments: 0

∫(√(16−9x^2 dx))

$$\int\sqrt{\mathrm{16}−\mathrm{9}{x}^{\mathrm{2}} {dx}} \\ $$

Question Number 20384    Answers: 1   Comments: 0

∫((x^3 dx)/((2+3x)^2 ))

$$\int\frac{{x}^{\mathrm{3}} {dx}}{\left(\mathrm{2}+\mathrm{3}{x}\right)^{\mathrm{2}} } \\ $$

Question Number 20383    Answers: 1   Comments: 0

∫(dx/(x(√(2+(x)^(1/3) ))))

$$\int\frac{{dx}}{{x}\sqrt{\mathrm{2}+\left({x}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} }} \\ $$

Question Number 20375    Answers: 1   Comments: 1

A small particle of mass m is projected at an angle θ with the x-axis with an initial velocity v_0 in the x-y plane as shown in the Figure. At a time t < ((v_0 sin θ)/g), the angular momentum of the particle is

$$\mathrm{A}\:\mathrm{small}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{is}\:\mathrm{projected} \\ $$$$\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\theta\:\mathrm{with}\:\mathrm{the}\:{x}-\mathrm{axis}\:\mathrm{with}\:\mathrm{an} \\ $$$$\mathrm{initial}\:\mathrm{velocity}\:{v}_{\mathrm{0}} \:\mathrm{in}\:\mathrm{the}\:{x}-{y}\:\mathrm{plane}\:\mathrm{as} \\ $$$$\mathrm{shown}\:\mathrm{in}\:\mathrm{the}\:\mathrm{Figure}.\:\mathrm{At}\:\mathrm{a}\:\mathrm{time} \\ $$$${t}\:<\:\frac{{v}_{\mathrm{0}} \:\mathrm{sin}\:\theta}{{g}},\:\mathrm{the}\:\mathrm{angular}\:\mathrm{momentum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{particle}\:\mathrm{is} \\ $$

Question Number 20372    Answers: 2   Comments: 0

The two roots of an equation x^3 − 9x^2 + 14x + 24 = 0 are in the ratio 3 : 2. Find the roots.

$$\mathrm{The}\:\mathrm{two}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{an}\:\mathrm{equation}\:{x}^{\mathrm{3}} \:−\:\mathrm{9}{x}^{\mathrm{2}} \\ $$$$+\:\mathrm{14}{x}\:+\:\mathrm{24}\:=\:\mathrm{0}\:\mathrm{are}\:\mathrm{in}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{3}\::\:\mathrm{2}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{roots}. \\ $$

Question Number 20364    Answers: 1   Comments: 0

Question Number 20367    Answers: 1   Comments: 0

Let f(x) = x^3 + 3x^2 + 9x + 6sinx, then find the number of real roots of the equation (1/(x − f(1))) + (2/(x − f(2))) + (3/(x − f(3))) = 0.

$$\mathrm{Let}\:{f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \:+\:\mathrm{3}{x}^{\mathrm{2}} \:+\:\mathrm{9}{x}\:+\:\mathrm{6sin}{x},\:\mathrm{then} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{real}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation} \\ $$$$\frac{\mathrm{1}}{{x}\:−\:{f}\left(\mathrm{1}\right)}\:+\:\frac{\mathrm{2}}{{x}\:−\:{f}\left(\mathrm{2}\right)}\:+\:\frac{\mathrm{3}}{{x}\:−\:{f}\left(\mathrm{3}\right)}\:=\:\mathrm{0}. \\ $$

Question Number 20578    Answers: 0   Comments: 2

Tinkutara and Ajfour please how do you do the following using lekh diagram: (i)introduction of dotted lines (ii)writing of letters (iii)shading (iv)putting colours in a diagram (v)draw live figures like birds thanks for the help

$$\:{Tinkutara}\:{and}\:\:{Ajfour}\:{please}\:{how} \\ $$$${do}\:{you}\:{do}\:{the}\:{following}\:{using} \\ $$$${lekh}\:{diagram}: \\ $$$$\left({i}\right){introduction}\:{of}\:{dotted}\:{lines} \\ $$$$\left({ii}\right){writing}\:{of}\:{letters} \\ $$$$\left({iii}\right){shading} \\ $$$$\left({iv}\right){putting}\:{colours}\:{in}\:{a}\:{diagram} \\ $$$$\left({v}\right){draw}\:{live}\:{figures}\:{like}\:{birds} \\ $$$$ \\ $$$${thanks}\:{for}\:{the}\:{help} \\ $$

Question Number 20576    Answers: 1   Comments: 0

sec(A−3Π/2)

$${sec}\left({A}−\mathrm{3}\Pi/\mathrm{2}\right) \\ $$

Question Number 20349    Answers: 0   Comments: 3

A ball rolled on ice with a velocity of 14 ms^(−1) comes to rest after travelling 40 m. Find the coefficient of friction. (Given, g = 9.8 m/s^2 )

$$\mathrm{A}\:\mathrm{ball}\:\mathrm{rolled}\:\mathrm{on}\:\mathrm{ice}\:\mathrm{with}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{of} \\ $$$$\mathrm{14}\:\mathrm{ms}^{−\mathrm{1}} \:\mathrm{comes}\:\mathrm{to}\:\mathrm{rest}\:\mathrm{after}\:\mathrm{travelling} \\ $$$$\mathrm{40}\:\mathrm{m}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{friction}. \\ $$$$\left(\mathrm{Given},\:{g}\:=\:\mathrm{9}.\mathrm{8}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right) \\ $$

Question Number 20346    Answers: 0   Comments: 3

To paint the side of a building, painter normally hoists himself up by pulling on the rope A as in figure. The painter and platform together weigh 200 N. The rope B can withstand 300 N. Find the maximum acceleration of the painter.

$$\mathrm{To}\:\mathrm{paint}\:\mathrm{the}\:\mathrm{side}\:\mathrm{of}\:\mathrm{a}\:\mathrm{building},\:\mathrm{painter} \\ $$$$\mathrm{normally}\:\mathrm{hoists}\:\mathrm{himself}\:\mathrm{up}\:\mathrm{by}\:\mathrm{pulling}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{rope}\:{A}\:\mathrm{as}\:\mathrm{in}\:\mathrm{figure}.\:\mathrm{The}\:\mathrm{painter}\:\mathrm{and} \\ $$$$\mathrm{platform}\:\mathrm{together}\:\mathrm{weigh}\:\mathrm{200}\:\mathrm{N}.\:\mathrm{The} \\ $$$$\mathrm{rope}\:{B}\:\mathrm{can}\:\mathrm{withstand}\:\mathrm{300}\:\mathrm{N}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{maximum}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{painter}. \\ $$

Question Number 20344    Answers: 1   Comments: 3

Determine the speed with which block B rises in figure if the end of the cord at A is pulled down with a speed of 2 m/s.

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{with}\:\mathrm{which}\:\mathrm{block} \\ $$$${B}\:\mathrm{rises}\:\mathrm{in}\:\mathrm{figure}\:\mathrm{if}\:\mathrm{the}\:\mathrm{end}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cord}\:\mathrm{at} \\ $$$${A}\:\mathrm{is}\:\mathrm{pulled}\:\mathrm{down}\:\mathrm{with}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{2}\:\mathrm{m}/\mathrm{s}. \\ $$

Question Number 20368    Answers: 0   Comments: 2

If α is a real root of 2x^3 − 3x^2 + 6x + 6 = 0, then find [α] where [∙] denotes the greatest integer function.

$$\mathrm{If}\:\alpha\:\mathrm{is}\:\mathrm{a}\:\mathrm{real}\:\mathrm{root}\:\mathrm{of}\:\mathrm{2}{x}^{\mathrm{3}} \:−\:\mathrm{3}{x}^{\mathrm{2}} \:+\:\mathrm{6}{x}\:+\:\mathrm{6}\:=\:\mathrm{0}, \\ $$$$\mathrm{then}\:\mathrm{find}\:\left[\alpha\right]\:\mathrm{where}\:\left[\centerdot\right]\:\mathrm{denotes}\:\mathrm{the} \\ $$$$\mathrm{greatest}\:\mathrm{integer}\:\mathrm{function}. \\ $$

Question Number 20338    Answers: 0   Comments: 0

Why Al_2 O_3 is amphoteric while B_2 O_3 is acidic?

$$\mathrm{Why}\:\mathrm{Al}_{\mathrm{2}} \mathrm{O}_{\mathrm{3}} \:\mathrm{is}\:\mathrm{amphoteric}\:\mathrm{while}\:\mathrm{B}_{\mathrm{2}} \mathrm{O}_{\mathrm{3}} \\ $$$$\mathrm{is}\:\mathrm{acidic}? \\ $$

Question Number 20337    Answers: 0   Comments: 0

Why oxidising character of F_2 > Cl_2 ?

$$\mathrm{Why}\:\mathrm{oxidising}\:\mathrm{character}\:\mathrm{of}\:\mathrm{F}_{\mathrm{2}} \:>\:\mathrm{Cl}_{\mathrm{2}} ? \\ $$

Question Number 20335    Answers: 0   Comments: 0

Covalent radius of an element having 82 electrons in extranuclear part and 82 protons in the nucleus is 146 A^o . Calculate the electronegativity on Allred Rochow scale of that element.

$$\mathrm{Covalent}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{an}\:\mathrm{element}\:\mathrm{having} \\ $$$$\mathrm{82}\:\mathrm{electrons}\:\mathrm{in}\:\mathrm{extranuclear}\:\mathrm{part}\:\mathrm{and}\:\mathrm{82} \\ $$$$\mathrm{protons}\:\mathrm{in}\:\mathrm{the}\:\mathrm{nucleus}\:\mathrm{is}\:\mathrm{146}\:\overset{\mathrm{o}} {\mathrm{A}}.\:\mathrm{Calculate} \\ $$$$\mathrm{the}\:\mathrm{electronegativity}\:\mathrm{on}\:\mathrm{Allred}\:\mathrm{Rochow} \\ $$$$\mathrm{scale}\:\mathrm{of}\:\mathrm{that}\:\mathrm{element}. \\ $$

Question Number 20334    Answers: 0   Comments: 0

Choose the correct regarding E.N. (1) B > Al > Ga > In (2) B > Al = Ga = In (3) B > In > Ga = Al (4) B > In > Ga > Al

$$\mathrm{Choose}\:\mathrm{the}\:\mathrm{correct}\:\mathrm{regarding}\:\mathrm{E}.\mathrm{N}. \\ $$$$\left(\mathrm{1}\right)\:\mathrm{B}\:>\:\mathrm{Al}\:>\:\mathrm{Ga}\:>\:\mathrm{In} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{B}\:>\:\mathrm{Al}\:=\:\mathrm{Ga}\:=\:\mathrm{In} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{B}\:>\:\mathrm{In}\:>\:\mathrm{Ga}\:=\:\mathrm{Al} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{B}\:>\:\mathrm{In}\:>\:\mathrm{Ga}\:>\:\mathrm{Al} \\ $$

  Pg 1794      Pg 1795      Pg 1796      Pg 1797      Pg 1798      Pg 1799      Pg 1800      Pg 1801      Pg 1802      Pg 1803   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com