Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1798

Question Number 28808    Answers: 2   Comments: 0

Question Number 28806    Answers: 1   Comments: 0

If n(A)=15 and n(B)=25, (a) What are the greatest and least values of n(AuB)? (b) What are the greatest and least value of n(AnB)? (c) Draw Venn diagrams to illustrate the four situations in (a) and (b) above

$$\mathrm{If}\:\mathrm{n}\left(\mathrm{A}\right)=\mathrm{15}\:\mathrm{and}\:\mathrm{n}\left(\mathrm{B}\right)=\mathrm{25},\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{and}\:\mathrm{least}\:\mathrm{values}\:\mathrm{of}\:\mathrm{n}\left(\mathrm{AuB}\right)? \\ $$$$\left(\mathrm{b}\right)\:\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{and}\:\mathrm{least}\:\mathrm{value}\:\mathrm{of}\:\mathrm{n}\left(\mathrm{AnB}\right)? \\ $$$$\left(\mathrm{c}\right)\:\mathrm{Draw}\:\mathrm{Venn}\:\mathrm{diagrams}\:\mathrm{to}\:\mathrm{illustrate}\:\mathrm{the}\:\mathrm{four}\: \\ $$$$\:\:\:\:\:\:\:\mathrm{situations}\:\mathrm{in}\:\left(\mathrm{a}\right)\:\mathrm{and}\:\left(\mathrm{b}\right)\:\mathrm{above} \\ $$

Question Number 28805    Answers: 1   Comments: 0

In a competition, a school awarded medals in different categories. 36 medals in dance,12 in dramatics and 18 medals in music.If these medals went to total 45,and only 4 persons got medals in all three catogories.Using set notations, how many received in exactly two of these categories?

$${In}\:{a}\:{competition},\:{a}\:{school}\:{awarded} \\ $$$${medals}\:{in}\:{different}\:{categories}. \\ $$$$\mathrm{36}\:{medals}\:{in}\:{dance},\mathrm{12}\:{in}\:{dramatics} \\ $$$${and}\:\mathrm{18}\:{medals}\:{in}\:{music}.{If}\:{these} \\ $$$${medals}\:{went}\:{to}\:{total}\:\mathrm{45},{and}\:{only} \\ $$$$\mathrm{4}\:{persons}\:{got}\:{medals}\:{in}\:{all}\:{three} \\ $$$${catogories}.{Using}\:{set}\:{notations}, \\ $$$${how}\:{many}\:{received}\:{in}\:{exactly} \\ $$$${two}\:{of}\:{these}\:{categories}? \\ $$

Question Number 28779    Answers: 3   Comments: 1

Question Number 28770    Answers: 1   Comments: 6

lim_(x→+∞) ((5x^4 −10x^2 +1)/(−3x^3 +10x^2 +50))

$$\underset{{x}\rightarrow+\infty} {{lim}}\:\frac{\mathrm{5}{x}^{\mathrm{4}} −\mathrm{10}{x}^{\mathrm{2}} +\mathrm{1}}{−\mathrm{3}{x}^{\mathrm{3}} +\mathrm{10}{x}^{\mathrm{2}} +\mathrm{50}} \\ $$

Question Number 28762    Answers: 1   Comments: 6

Question Number 28739    Answers: 1   Comments: 0

if S_n =((a(r^n −1))/(r−1)) make r the subject of formula

$${if}\:{S}_{{n}} =\frac{{a}\left({r}^{{n}} −\mathrm{1}\right)}{{r}−\mathrm{1}}\: \\ $$$$ \\ $$$${make}\:{r}\:{the}\:{subject}\:{of}\:{formula} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 28709    Answers: 1   Comments: 0

Question Number 28708    Answers: 0   Comments: 0

If θ = log_e {tan(((3π)/8))} , prove that 3 tanh(2θ) = 2(√2)

$$\mathrm{If}\:\:\:\theta\:\:=\:\:\mathrm{log}_{\mathrm{e}} \left\{\mathrm{tan}\left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)\right\}\:,\:\:\:\mathrm{prove}\:\mathrm{that}\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\:\mathrm{tanh}\left(\mathrm{2}\theta\right)\:=\:\mathrm{2}\sqrt{\mathrm{2}} \\ $$

Question Number 28706    Answers: 1   Comments: 7

most important question gor boar or iit solve the integration (1/(3sinx+4cosx))

$${most}\:{important}\:{question}\:{gor}\:{boar}\:{or}\:{iit}\: \\ $$$${solve}\:{the}\:{integration}\:\:\frac{\mathrm{1}}{\mathrm{3}{sinx}+\mathrm{4}{cosx}} \\ $$

Question Number 28705    Answers: 1   Comments: 0

solve the integrayion ((sin2x)/(sin5xsin3x))

$${solve}\:{the}\:{integrayion}\:\frac{{sin}\mathrm{2}{x}}{{sin}\mathrm{5}{xsin}\mathrm{3}{x}} \\ $$

Question Number 28703    Answers: 0   Comments: 1

(1/((a^2 +x^2 )^(3/2) )) solve the integration

$$\frac{\mathrm{1}}{\left({a}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }\:\:\:{solve}\:{the}\:{integration} \\ $$

Question Number 28702    Answers: 0   Comments: 1

solve integration (1/(√((x−α)(β−x)))) .

$${solve}\:{integration}\:\:\frac{\mathrm{1}}{\sqrt{\left({x}−\alpha\right)\left(\beta−{x}\right)}}\:\:. \\ $$

Question Number 28701    Answers: 1   Comments: 2

integration (x^3 /(x^2 +x+1))

$${integration}\:\frac{{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} +{x}+\mathrm{1}} \\ $$

Question Number 28700    Answers: 0   Comments: 0

solve integration (√((sin(x−α))/(sin(x+α))))

$${solve}\:{integration}\:\sqrt{\frac{{sin}\left({x}−\alpha\right)}{{sin}\left({x}+\alpha\right)}} \\ $$

Question Number 28698    Answers: 0   Comments: 3

(∞/(negative number))=? ∞ or −∞ ?

$$\frac{\infty}{\mathrm{negative}\:\mathrm{number}}=? \\ $$$$\:\infty\:\:\:\:\:\:\:\:\:\:\mathrm{or}\:\:\:\:\:\:\:\:\:−\infty\:\:? \\ $$

Question Number 28695    Answers: 1   Comments: 0

∣a^→ +b^→ ∣=40,∣a^→ −b^→ ∣=20&∣a^→ ∣=10 then find∣b^→ ∣

$$\mid\overset{\rightarrow} {\mathrm{a}}+\overset{\rightarrow} {\mathrm{b}}\mid=\mathrm{40},\mid\overset{\rightarrow} {\mathrm{a}}−\overset{\rightarrow} {\mathrm{b}}\mid=\mathrm{20\&}\mid\overset{\rightarrow} {\mathrm{a}}\mid=\mathrm{10}\:\mathrm{then}\:\mathrm{find}\mid\overset{\rightarrow} {\mathrm{b}}\mid \\ $$

Question Number 28694    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ e^(−tx^2 ) cosx dx with t>0 .

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{tx}^{\mathrm{2}} } {cosx}\:{dx}\:\:{with}\:{t}>\mathrm{0}\:. \\ $$

Question Number 28690    Answers: 0   Comments: 5

Question Number 28687    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ e^(−( t^2 +(1/t^2 ))) dt.

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left(\:{t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)} {dt}. \\ $$

Question Number 28685    Answers: 0   Comments: 0

find the value of I=∫∫_D x^3 dxdy with D= {(x,y)∈R^2 /1≤x≤2 and x^2 −y^2 ≥1 }.

$${find}\:{the}\:{value}\:{of}\:\:{I}=\int\int_{{D}} \:{x}^{\mathrm{3}} {dxdy}\:\:\:{with} \\ $$$${D}=\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\mathrm{1}\leqslant{x}\leqslant\mathrm{2}\:{and}\:\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \:\:\geqslant\mathrm{1}\:\:\right\}. \\ $$

Question Number 28684    Answers: 0   Comments: 0

find sum of S(x)= Σ_(n=1) ^∞ (−1)^(n−1) (x^(2n+1) /(4n^2 −1)) .

$${find}\:\:{sum}\:{of}\:{S}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}\:. \\ $$

Question Number 28683    Answers: 0   Comments: 1

developp f(x)=e^(−αx) 2π periodic at Fourier serie with α>0.

$${developp}\:{f}\left({x}\right)={e}^{−\alpha{x}} \:\:\:\mathrm{2}\pi\:{periodic}\:{at}\:{Fourier}\:{serie}\:{with} \\ $$$$\alpha>\mathrm{0}. \\ $$

Question Number 28682    Answers: 0   Comments: 2

nature of the serie Σ_(n=0) ^∞ tan(((2n+1)/n^3 )) .

$${nature}\:{of}\:{the}\:{serie}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{tan}\left(\frac{\mathrm{2}{n}+\mathrm{1}}{{n}^{\mathrm{3}} }\right)\:. \\ $$

Question Number 28681    Answers: 0   Comments: 0

give a equivalent of w_n = Σ_(k=n+1) ^∞ (1/(k!)) .

$${give}\:{a}\:{equivalent}\:{of}\:\:{w}_{{n}} =\:\:\:\sum_{{k}={n}+\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{k}!}\:\:. \\ $$

Question Number 28680    Answers: 0   Comments: 0

find lim_(ξ→0) ∫_0 ^(π/2) (dx/(√(sin^2 x +ξcos^2 x))) .

$${find}\:\:{lim}_{\xi\rightarrow\mathrm{0}} \:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{dx}}{\sqrt{{sin}^{\mathrm{2}} {x}\:+\xi{cos}^{\mathrm{2}} {x}}}\:\:\:\:\:. \\ $$

  Pg 1793      Pg 1794      Pg 1795      Pg 1796      Pg 1797      Pg 1798      Pg 1799      Pg 1800      Pg 1801      Pg 1802   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com