Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1798

Question Number 29987    Answers: 0   Comments: 0

prove that Σ_(n=1_(n≠p) ) ^∞ (1/(n^2 −p^2 )) = (3/(4p^2 )) .

$${prove}\:{that}\:\:\sum_{{n}=\mathrm{1}_{{n}\neq{p}} } ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:−{p}^{\mathrm{2}} }\:\:=\:\:\frac{\mathrm{3}}{\mathrm{4}{p}^{\mathrm{2}} }\:. \\ $$

Question Number 29986    Answers: 1   Comments: 1

find Σ_(n=0) ^∞ ((n+1)/4^n ) .

$${find}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{n}+\mathrm{1}}{\mathrm{4}^{{n}} }\:. \\ $$

Question Number 29985    Answers: 0   Comments: 0

prove that Σ_(p=1) ^∞ (a^p /(1−a^(2p) )) = Σ_(p=1) ^∞ (a^(2p−1) /(1−a^(2p−1) )) .

$${prove}\:{that}\:\:\:\:\sum_{{p}=\mathrm{1}} ^{\infty} \:\:\:\:\:\:\frac{{a}^{{p}} }{\mathrm{1}−{a}^{\mathrm{2}{p}} }\:=\:\sum_{{p}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{{a}^{\mathrm{2}{p}−\mathrm{1}} }{\mathrm{1}−{a}^{\mathrm{2}{p}−\mathrm{1}} }\:. \\ $$

Question Number 29984    Answers: 0   Comments: 0

prove that Σ_(n=1) ^∞ (H_n /(n!))==e Σ_(n=1) ^∞ (((1)^(n−1) )/(n (n!))) .

$${prove}\:{that}\:\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{H}_{{n}} }{{n}!}=={e}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(\mathrm{1}\right)^{\boldsymbol{{n}}−\mathrm{1}} }{\boldsymbol{{n}}\:\left(\boldsymbol{{n}}!\right)}\:. \\ $$

Question Number 29983    Answers: 0   Comments: 1

find radius andsum of Σ_(n=1) ^∞ ((n−1)/(n!)) x^n .

$${find}\:{radius}\:{andsum}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{n}−\mathrm{1}}{{n}!}\:{x}^{{n}} . \\ $$

Question Number 29982    Answers: 0   Comments: 0

let give f(x)=(√(x+(√(1+x^2 )))) developp f at integr series in point 0

$${let}\:{give}\:{f}\left({x}\right)=\sqrt{{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} \:}}\:\:\:\:{developp}\:{f}\:{at}\:{integr}\:{series} \\ $$$${in}\:{point}\:\mathrm{0} \\ $$

Question Number 29981    Answers: 0   Comments: 1

find radius and sum of Σ_(n=0) ^∞ (x^(2n) /(2n+1)) 2) find Σ_(n=0) ^∞ (1/((2n+1)9^n )) .

$${find}\:{radius}\:{and}\:{sum}\:{of}\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{9}^{{n}} }\:. \\ $$

Question Number 29980    Answers: 0   Comments: 0

prove that γ= Σ_(n=1) ^∞ ((1/n) −ln(1 +(1/n))) 2)show that γ= Σ_(k=2) ^∞ (((−1)^k )/k) ξ(k).

$${prove}\:{that}\:\gamma=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\left(\frac{\mathrm{1}}{{n}}\:\:−{ln}\left(\mathrm{1}\:+\frac{\mathrm{1}}{{n}}\right)\right) \\ $$$$\left.\mathrm{2}\right){show}\:{that}\:\gamma=\:\sum_{{k}=\mathrm{2}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}\:\xi\left({k}\right). \\ $$

Question Number 29979    Answers: 0   Comments: 1

find the radius of S(x)= Σ_(n=0) ^∞ (x^(3n+2) /(3n+2)) 2)find the value of Σ_(n=0) ^∞ (1/((3n+2)3^n )).

$${find}\:{the}\:{radius}\:{of}\:{S}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{3}{n}+\mathrm{2}} }{\mathrm{3}{n}+\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{2}\right)\mathrm{3}^{{n}} }. \\ $$

Question Number 29978    Answers: 0   Comments: 2

let give x>0 1) prove that ∫_0 ^1 (dt/(1+t^x ))= Σ_(n=0) ^∞ (((−1)^n )/(nx+1)) 2) find Σ_(n=0) ^∞ (((−1)^n )/(n+1)) and Σ_(n=0) ^∞ (((−1)^n )/(2n+1)) 3) find Σ_(n=1) ^∞ (((−1)^n )/(3n+1)) .

$${let}\:{give}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{\mathrm{1}+{t}^{{x}} }=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{nx}+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}\:\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{3}{n}+\mathrm{1}}\:. \\ $$

Question Number 29976    Answers: 0   Comments: 0

prove that ln(Γ(x))= −lnx −γx +Σ_(n=1) ^∞ ( (x/n) −ln( 1+(x/n))) with x>0

$${prove}\:{that} \\ $$$${ln}\left(\Gamma\left({x}\right)\right)=\:−{lnx}\:−\gamma{x}\:\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\left(\:\:\frac{{x}}{{n}}\:\:−{ln}\left(\:\mathrm{1}+\frac{{x}}{{n}}\right)\right)\:{with}\:{x}>\mathrm{0} \\ $$

Question Number 29975    Answers: 0   Comments: 2

let give 0<α<1 1) prove that π coth(πα) −(1/α) = Σ_(n=1) ^∞ ((2α)/(α^2 +n^2 )). 2)by integration on[0,1] find Π_(n=1) ^∞ (1+(1/n^2 )).

$$\:{let}\:{give}\:\mathrm{0}<\alpha<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\pi\:{coth}\left(\pi\alpha\right)\:−\frac{\mathrm{1}}{\alpha}\:=\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{2}\alpha}{\alpha^{\mathrm{2}} \:+{n}^{\mathrm{2}} }. \\ $$$$\left.\mathrm{2}\right){by}\:{integration}\:{on}\left[\mathrm{0},\mathrm{1}\right]\:{find}\:\prod_{{n}=\mathrm{1}} ^{\infty} \:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right). \\ $$

Question Number 29974    Answers: 1   Comments: 0

(√(5=?))

$$\sqrt{\mathrm{5}=?} \\ $$

Question Number 29973    Answers: 0   Comments: 1

find Σ_(n=1) ^∞ ((sin(nα))/n) x^n with −1<x<1.

$${find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({n}\alpha\right)}{{n}}\:{x}^{{n}} \:{with}\:\:−\mathrm{1}<{x}<\mathrm{1}. \\ $$

Question Number 29972    Answers: 0   Comments: 1

let give ∣x∣<1 find ∫_0 ^(π/2) (dθ/(√(1−x^2 cos^2 θ))) .

$${let}\:{give}\:\mid{x}\mid<\mathrm{1}\:{find}\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{d}\theta}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta}}\:. \\ $$

Question Number 29971    Answers: 0   Comments: 2

find J(x)= ∫_0 ^∞ (dt/(x+e^t )) ?.

$${find}\:{J}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{x}+{e}^{{t}} }\:\:\:\:?. \\ $$

Question Number 29970    Answers: 0   Comments: 1

a>0 and b>0 if (1/((1−ax)(1−bx)))=Σ_n a_n x^n find the sequence a_n .

$${a}>\mathrm{0}\:{and}\:{b}>\mathrm{0}\:\:{if}\:\:\:\frac{\mathrm{1}}{\left(\mathrm{1}−{ax}\right)\left(\mathrm{1}−{bx}\right)}=\sum_{{n}} \:\:{a}_{{n}} \:{x}^{{n}} \\ $$$${find}\:{the}\:{sequence}\:{a}_{{n}} . \\ $$

Question Number 30000    Answers: 1   Comments: 1

If cos α = sin β sin φ=sin γ cos ψ cos β = sin γ sin ψ =sin α cos θ cos γ = sin α sin θ =sin β cos φ then find cos α, cos β , cos γ briefly and if possible linearly in terms of only sin θ, cos θ, sin φ, cos φ, sin ψ, cos ψ .

$${If}\:\mathrm{cos}\:\alpha\:=\:\mathrm{sin}\:\beta\:\mathrm{sin}\:\phi=\mathrm{sin}\:\gamma\:\mathrm{cos}\:\psi \\ $$$$\:\:\:\:\:\:\mathrm{cos}\:\beta\:=\:\mathrm{sin}\:\gamma\:\mathrm{sin}\:\psi\:=\mathrm{sin}\:\alpha\:\mathrm{cos}\:\theta \\ $$$$\:\:\:\:\:\:\mathrm{cos}\:\gamma\:=\:\mathrm{sin}\:\alpha\:\mathrm{sin}\:\theta\:=\mathrm{sin}\:\beta\:\mathrm{cos}\:\phi \\ $$$${then}\:{find}\:\:\mathrm{cos}\:\alpha,\:\mathrm{cos}\:\beta\:,\:\mathrm{cos}\:\gamma\:\:\: \\ $$$${briefly}\:{and}\:{if}\:{possible}\:{linearly} \\ $$$${in}\:{terms}\:{of}\:{only}\:\mathrm{sin}\:\theta,\:\mathrm{cos}\:\theta, \\ $$$$\mathrm{sin}\:\phi,\:\mathrm{cos}\:\phi,\:\mathrm{sin}\:\psi,\:\mathrm{cos}\:\psi\:. \\ $$

Question Number 29960    Answers: 1   Comments: 0

Question Number 29957    Answers: 1   Comments: 0

∫3xdx

$$\int\mathrm{3}{x}\mathrm{d}{x} \\ $$

Question Number 30032    Answers: 0   Comments: 3

(x+1)^x −x^((x+1)) =1 x=?

$$\left({x}+\mathrm{1}\right)^{{x}} −{x}^{\left({x}+\mathrm{1}\right)} =\mathrm{1} \\ $$$${x}=? \\ $$

Question Number 29953    Answers: 0   Comments: 2

Question Number 29924    Answers: 1   Comments: 5

Question Number 29909    Answers: 2   Comments: 1

please solve this: (√(30+12(√6)))

$${please}\:{solve}\:{this}:\:\:\sqrt{\mathrm{30}+\mathrm{12}\sqrt{\mathrm{6}}} \\ $$

Question Number 29907    Answers: 1   Comments: 5

Question Number 29896    Answers: 5   Comments: 1

  Pg 1793      Pg 1794      Pg 1795      Pg 1796      Pg 1797      Pg 1798      Pg 1799      Pg 1800      Pg 1801      Pg 1802   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com