Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1798
Question Number 29833 Answers: 1 Comments: 0
$${find}\:\:{cos}^{\mathrm{4}} \left(\frac{\pi}{\mathrm{8}}\right)\:+{cos}^{\mathrm{4}} \left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)\:+{cos}^{\mathrm{4}} \left(\frac{\mathrm{5}\pi}{\mathrm{8}}\right)\:+{cos}^{\mathrm{4}} \left(\frac{\mathrm{7}\pi}{\mathrm{8}}\right). \\ $$
Question Number 29832 Answers: 0 Comments: 0
$${p}\:{is}\:{a}\:{polynomial}\:{having}\:{n}\:{roots}\:{x}_{{i}} \:\:{with}\:{x}_{{i}} \neq{x}_{{j}} \:{for}\:{i}\neq{j} \\ $$$${prove}\:{that}\:\sum_{{i}=\mathrm{1}} ^{{n}} \:\:\frac{{p}^{''} \left({x}_{{i}} \right)}{{p}^{'} \left({x}_{{i}} \right)}=\mathrm{0} \\ $$
Question Number 29821 Answers: 1 Comments: 3
$$\frac{\mathrm{sin}\:\mathrm{16x}}{\mathrm{sin}\:\mathrm{x}}\:\:\:\:\:\:?\mathrm{pls}\:\mathrm{help}. \\ $$
Question Number 29820 Answers: 1 Comments: 3
Question Number 29805 Answers: 0 Comments: 1
$${f}\left({x}\right)=\left({x}+{a}_{\mathrm{1}} \right)\left({x}+{a}_{\mathrm{2}} \right)\left({x}+{a}_{\mathrm{3}} \right)...\left({x}+{a}_{{n}} \right) \\ $$$${find}\:{the}\:{coefficient}\:{of}\:{term}\:{x}^{{k}} \:\left(\mathrm{0}\leqslant{k}\leqslant{n}\right) \\ $$
Question Number 29818 Answers: 1 Comments: 0
$$\mathrm{4},\:\mathrm{8},\:\mathrm{16},\:\mathrm{31},\:\mathrm{57},\:\mathrm{99},\:\mathrm{163},\:{T}_{\mathrm{8}} \:,{T}_{\mathrm{9}} \:,\:.... \\ $$$${Find}\:{T}_{\mathrm{8}} \:,\:{T}_{\mathrm{9}} \:. \\ $$
Question Number 29794 Answers: 0 Comments: 9
$${Fluids}: \\ $$
Question Number 29831 Answers: 0 Comments: 0
$$\left.{let}\:{give}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\right){prove}\:{that}\:\:\:{prove}\:{that} \\ $$$${f}^{\left({n}\right)} \left({x}\right)=\frac{{p}_{{n}} \left({x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}+\mathrm{1}} }\:{with}\:{p}_{{n}} {is}\:{a}\:{polynomial} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:{p}_{{n}+\mathrm{1}} \left({x}\right)=\left(\mathrm{1}+{x}^{\mathrm{2}} \right){p}_{{n}} ^{'} \left({x}\right)\:−\mathrm{2}\left({n}+\mathrm{1}\right){p}_{{n}} \left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{p}_{\mathrm{0}} \left({x}\right)\:,{p}_{\mathrm{1}} \left({x}\right)\:,{p}_{\mathrm{2}} \left({x}\right)\:\:,{p}_{\mathrm{3}} \left({x}\right)\:\:. \\ $$
Question Number 29786 Answers: 0 Comments: 0
Question Number 29785 Answers: 0 Comments: 0
Question Number 29778 Answers: 1 Comments: 0
Question Number 29803 Answers: 0 Comments: 3
Question Number 29773 Answers: 0 Comments: 0
$$\underset{\mathrm{x}\rightarrow\mathrm{0},\mathrm{y}\rightarrow\infty} {\mathrm{lim}xy}=? \\ $$
Question Number 29753 Answers: 0 Comments: 0
$$ \\ $$
Question Number 29752 Answers: 0 Comments: 0
$$\mathrm{pls}\:\mathrm{elp}\:\mathrm{with}\:\mathrm{dis}... \\ $$$$ \\ $$$$\int\frac{\left(\mathrm{1}−\mathrm{x}\right)\boldsymbol{{dx}}}{\left(\mathrm{1}+\mathrm{x}\right)\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{3}} }} \\ $$
Question Number 29770 Answers: 2 Comments: 0
$${find}\:{the}\:{equation}\:{of}\:{a}\:{pair}\:{of}\:{straight}\:{lines}\:{represented}\:{by}\:{given}\:{equation}\:\mathrm{2}{x}^{\mathrm{2}\:} −\mathrm{5}{xy}−\mathrm{3}{y}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{19}{y}−\mathrm{20}=\mathrm{0} \\ $$
Question Number 29728 Answers: 0 Comments: 8
Question Number 29727 Answers: 1 Comments: 4
Question Number 29776 Answers: 0 Comments: 0
Question Number 29777 Answers: 2 Comments: 5
$${f}\left({x}\right)\:=\:\left({x}\:−\:\mathrm{1}\right)\left({x}\:−\:\mathrm{2}\right)\left({x}\:−\:\mathrm{3}\right)...\left({x}\:−\:\mathrm{50}\right) \\ $$$$\mathrm{Find}\:\mathrm{coefficient}\:\mathrm{of}\:{x}^{\mathrm{49}} \\ $$
Question Number 29726 Answers: 0 Comments: 2
Question Number 29887 Answers: 1 Comments: 3
Question Number 29723 Answers: 1 Comments: 1
Question Number 29700 Answers: 1 Comments: 0
$$\mathrm{32}^{\mathrm{32}^{\mathrm{32}} } \:/\mathrm{7}...\mathrm{find}\:\mathrm{remainder} \\ $$
Question Number 29689 Answers: 1 Comments: 2
$${find}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{2}}{\mathrm{1}+{a}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}}} =? \\ $$
Question Number 29680 Answers: 1 Comments: 0
$$\mathrm{i}^{\mathrm{i}\:} \:\:\mathrm{what}\:\mathrm{is}\:\mathrm{iota}\:\mathrm{to}\:\mathrm{power}\:\mathrm{iota} \\ $$
Pg 1793 Pg 1794 Pg 1795 Pg 1796 Pg 1797 Pg 1798 Pg 1799 Pg 1800 Pg 1801 Pg 1802
Terms of Service
Privacy Policy
Contact: info@tinkutara.com