Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1798
Question Number 30089 Answers: 0 Comments: 0
$$\mathrm{prove}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{or}\:\mathrm{divergence}\:\mathrm{of}\:\:\:\:\left(\frac{\mathrm{n}\:−\:\mathrm{1}}{\mathrm{n}}\right)_{\mathrm{n}\:=\:\mathrm{1}} ^{\infty} \\ $$
Question Number 30087 Answers: 3 Comments: 0
$$\mathrm{solve}: \\ $$$$\mathrm{cos3}{x}.{cos}^{\mathrm{3}} {x}+\mathrm{sin}\:\mathrm{3}{x}.\mathrm{sin}\:^{\mathrm{3}} {x}=\mathrm{0}. \\ $$
Question Number 30079 Answers: 4 Comments: 1
Question Number 30054 Answers: 1 Comments: 0
Question Number 30049 Answers: 0 Comments: 1
$${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{3}^{{n}} }\:. \\ $$
Question Number 30045 Answers: 1 Comments: 2
Question Number 30030 Answers: 1 Comments: 2
Question Number 30017 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{elements}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ellipse}\:\mathrm{given}\:\mathrm{the}\:\mathrm{following}\:\mathrm{equation} \\ $$$$\mathrm{1}.\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{25}}+\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{1} \\ $$$$\mathrm{2}.\mathrm{x}^{\mathrm{2}} +\mathrm{9y}^{\mathrm{2}} =\mathrm{9} \\ $$
Question Number 30008 Answers: 0 Comments: 1
$${integrate}\:{w}.{r}.{t}\:{x} \\ $$$$\int\left({e}^{{x}^{\mathrm{2}} } \right){dx} \\ $$
Question Number 30002 Answers: 0 Comments: 5
Question Number 29998 Answers: 0 Comments: 0
Question Number 29989 Answers: 1 Comments: 0
Question Number 29987 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\sum_{{n}=\mathrm{1}_{{n}\neq{p}} } ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:−{p}^{\mathrm{2}} }\:\:=\:\:\frac{\mathrm{3}}{\mathrm{4}{p}^{\mathrm{2}} }\:. \\ $$
Question Number 29986 Answers: 1 Comments: 1
$${find}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{n}+\mathrm{1}}{\mathrm{4}^{{n}} }\:. \\ $$
Question Number 29985 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\:\:\sum_{{p}=\mathrm{1}} ^{\infty} \:\:\:\:\:\:\frac{{a}^{{p}} }{\mathrm{1}−{a}^{\mathrm{2}{p}} }\:=\:\sum_{{p}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{{a}^{\mathrm{2}{p}−\mathrm{1}} }{\mathrm{1}−{a}^{\mathrm{2}{p}−\mathrm{1}} }\:. \\ $$
Question Number 29984 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{H}_{{n}} }{{n}!}=={e}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(\mathrm{1}\right)^{\boldsymbol{{n}}−\mathrm{1}} }{\boldsymbol{{n}}\:\left(\boldsymbol{{n}}!\right)}\:. \\ $$
Question Number 29983 Answers: 0 Comments: 1
$${find}\:{radius}\:{andsum}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{n}−\mathrm{1}}{{n}!}\:{x}^{{n}} . \\ $$
Question Number 29982 Answers: 0 Comments: 0
$${let}\:{give}\:{f}\left({x}\right)=\sqrt{{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} \:}}\:\:\:\:{developp}\:{f}\:{at}\:{integr}\:{series} \\ $$$${in}\:{point}\:\mathrm{0} \\ $$
Question Number 29981 Answers: 0 Comments: 1
$${find}\:{radius}\:{and}\:{sum}\:{of}\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{9}^{{n}} }\:. \\ $$
Question Number 29980 Answers: 0 Comments: 0
$${prove}\:{that}\:\gamma=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\left(\frac{\mathrm{1}}{{n}}\:\:−{ln}\left(\mathrm{1}\:+\frac{\mathrm{1}}{{n}}\right)\right) \\ $$$$\left.\mathrm{2}\right){show}\:{that}\:\gamma=\:\sum_{{k}=\mathrm{2}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}\:\xi\left({k}\right). \\ $$
Question Number 29979 Answers: 0 Comments: 1
$${find}\:{the}\:{radius}\:{of}\:{S}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{3}{n}+\mathrm{2}} }{\mathrm{3}{n}+\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{2}\right)\mathrm{3}^{{n}} }. \\ $$
Question Number 29978 Answers: 0 Comments: 2
$${let}\:{give}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{\mathrm{1}+{t}^{{x}} }=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{nx}+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}\:\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{3}{n}+\mathrm{1}}\:. \\ $$
Question Number 29976 Answers: 0 Comments: 0
$${prove}\:{that} \\ $$$${ln}\left(\Gamma\left({x}\right)\right)=\:−{lnx}\:−\gamma{x}\:\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\left(\:\:\frac{{x}}{{n}}\:\:−{ln}\left(\:\mathrm{1}+\frac{{x}}{{n}}\right)\right)\:{with}\:{x}>\mathrm{0} \\ $$
Question Number 29975 Answers: 0 Comments: 2
$$\:{let}\:{give}\:\mathrm{0}<\alpha<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\pi\:{coth}\left(\pi\alpha\right)\:−\frac{\mathrm{1}}{\alpha}\:=\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{2}\alpha}{\alpha^{\mathrm{2}} \:+{n}^{\mathrm{2}} }. \\ $$$$\left.\mathrm{2}\right){by}\:{integration}\:{on}\left[\mathrm{0},\mathrm{1}\right]\:{find}\:\prod_{{n}=\mathrm{1}} ^{\infty} \:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right). \\ $$
Question Number 29974 Answers: 1 Comments: 0
$$\sqrt{\mathrm{5}=?} \\ $$
Question Number 29973 Answers: 0 Comments: 1
$${find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({n}\alpha\right)}{{n}}\:{x}^{{n}} \:{with}\:\:−\mathrm{1}<{x}<\mathrm{1}. \\ $$
Pg 1793 Pg 1794 Pg 1795 Pg 1796 Pg 1797 Pg 1798 Pg 1799 Pg 1800 Pg 1801 Pg 1802
Terms of Service
Privacy Policy
Contact: info@tinkutara.com