Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1798
Question Number 29987 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\sum_{{n}=\mathrm{1}_{{n}\neq{p}} } ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:−{p}^{\mathrm{2}} }\:\:=\:\:\frac{\mathrm{3}}{\mathrm{4}{p}^{\mathrm{2}} }\:. \\ $$
Question Number 29986 Answers: 1 Comments: 1
$${find}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{n}+\mathrm{1}}{\mathrm{4}^{{n}} }\:. \\ $$
Question Number 29985 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\:\:\sum_{{p}=\mathrm{1}} ^{\infty} \:\:\:\:\:\:\frac{{a}^{{p}} }{\mathrm{1}−{a}^{\mathrm{2}{p}} }\:=\:\sum_{{p}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{{a}^{\mathrm{2}{p}−\mathrm{1}} }{\mathrm{1}−{a}^{\mathrm{2}{p}−\mathrm{1}} }\:. \\ $$
Question Number 29984 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{H}_{{n}} }{{n}!}=={e}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(\mathrm{1}\right)^{\boldsymbol{{n}}−\mathrm{1}} }{\boldsymbol{{n}}\:\left(\boldsymbol{{n}}!\right)}\:. \\ $$
Question Number 29983 Answers: 0 Comments: 1
$${find}\:{radius}\:{andsum}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{n}−\mathrm{1}}{{n}!}\:{x}^{{n}} . \\ $$
Question Number 29982 Answers: 0 Comments: 0
$${let}\:{give}\:{f}\left({x}\right)=\sqrt{{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} \:}}\:\:\:\:{developp}\:{f}\:{at}\:{integr}\:{series} \\ $$$${in}\:{point}\:\mathrm{0} \\ $$
Question Number 29981 Answers: 0 Comments: 1
$${find}\:{radius}\:{and}\:{sum}\:{of}\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{9}^{{n}} }\:. \\ $$
Question Number 29980 Answers: 0 Comments: 0
$${prove}\:{that}\:\gamma=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\left(\frac{\mathrm{1}}{{n}}\:\:−{ln}\left(\mathrm{1}\:+\frac{\mathrm{1}}{{n}}\right)\right) \\ $$$$\left.\mathrm{2}\right){show}\:{that}\:\gamma=\:\sum_{{k}=\mathrm{2}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}\:\xi\left({k}\right). \\ $$
Question Number 29979 Answers: 0 Comments: 1
$${find}\:{the}\:{radius}\:{of}\:{S}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{3}{n}+\mathrm{2}} }{\mathrm{3}{n}+\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{2}\right)\mathrm{3}^{{n}} }. \\ $$
Question Number 29978 Answers: 0 Comments: 2
$${let}\:{give}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{\mathrm{1}+{t}^{{x}} }=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{nx}+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}\:\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{3}{n}+\mathrm{1}}\:. \\ $$
Question Number 29976 Answers: 0 Comments: 0
$${prove}\:{that} \\ $$$${ln}\left(\Gamma\left({x}\right)\right)=\:−{lnx}\:−\gamma{x}\:\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\left(\:\:\frac{{x}}{{n}}\:\:−{ln}\left(\:\mathrm{1}+\frac{{x}}{{n}}\right)\right)\:{with}\:{x}>\mathrm{0} \\ $$
Question Number 29975 Answers: 0 Comments: 2
$$\:{let}\:{give}\:\mathrm{0}<\alpha<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\pi\:{coth}\left(\pi\alpha\right)\:−\frac{\mathrm{1}}{\alpha}\:=\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{2}\alpha}{\alpha^{\mathrm{2}} \:+{n}^{\mathrm{2}} }. \\ $$$$\left.\mathrm{2}\right){by}\:{integration}\:{on}\left[\mathrm{0},\mathrm{1}\right]\:{find}\:\prod_{{n}=\mathrm{1}} ^{\infty} \:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right). \\ $$
Question Number 29974 Answers: 1 Comments: 0
$$\sqrt{\mathrm{5}=?} \\ $$
Question Number 29973 Answers: 0 Comments: 1
$${find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({n}\alpha\right)}{{n}}\:{x}^{{n}} \:{with}\:\:−\mathrm{1}<{x}<\mathrm{1}. \\ $$
Question Number 29972 Answers: 0 Comments: 1
$${let}\:{give}\:\mid{x}\mid<\mathrm{1}\:{find}\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{d}\theta}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta}}\:. \\ $$
Question Number 29971 Answers: 0 Comments: 2
$${find}\:{J}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{x}+{e}^{{t}} }\:\:\:\:?. \\ $$
Question Number 29970 Answers: 0 Comments: 1
$${a}>\mathrm{0}\:{and}\:{b}>\mathrm{0}\:\:{if}\:\:\:\frac{\mathrm{1}}{\left(\mathrm{1}−{ax}\right)\left(\mathrm{1}−{bx}\right)}=\sum_{{n}} \:\:{a}_{{n}} \:{x}^{{n}} \\ $$$${find}\:{the}\:{sequence}\:{a}_{{n}} . \\ $$
Question Number 30000 Answers: 1 Comments: 1
$${If}\:\mathrm{cos}\:\alpha\:=\:\mathrm{sin}\:\beta\:\mathrm{sin}\:\phi=\mathrm{sin}\:\gamma\:\mathrm{cos}\:\psi \\ $$$$\:\:\:\:\:\:\mathrm{cos}\:\beta\:=\:\mathrm{sin}\:\gamma\:\mathrm{sin}\:\psi\:=\mathrm{sin}\:\alpha\:\mathrm{cos}\:\theta \\ $$$$\:\:\:\:\:\:\mathrm{cos}\:\gamma\:=\:\mathrm{sin}\:\alpha\:\mathrm{sin}\:\theta\:=\mathrm{sin}\:\beta\:\mathrm{cos}\:\phi \\ $$$${then}\:{find}\:\:\mathrm{cos}\:\alpha,\:\mathrm{cos}\:\beta\:,\:\mathrm{cos}\:\gamma\:\:\: \\ $$$${briefly}\:{and}\:{if}\:{possible}\:{linearly} \\ $$$${in}\:{terms}\:{of}\:{only}\:\mathrm{sin}\:\theta,\:\mathrm{cos}\:\theta, \\ $$$$\mathrm{sin}\:\phi,\:\mathrm{cos}\:\phi,\:\mathrm{sin}\:\psi,\:\mathrm{cos}\:\psi\:. \\ $$
Question Number 29960 Answers: 1 Comments: 0
Question Number 29957 Answers: 1 Comments: 0
$$\int\mathrm{3}{x}\mathrm{d}{x} \\ $$
Question Number 30032 Answers: 0 Comments: 3
$$\left({x}+\mathrm{1}\right)^{{x}} −{x}^{\left({x}+\mathrm{1}\right)} =\mathrm{1} \\ $$$${x}=? \\ $$
Question Number 29953 Answers: 0 Comments: 2
Question Number 29924 Answers: 1 Comments: 5
Question Number 29909 Answers: 2 Comments: 1
$${please}\:{solve}\:{this}:\:\:\sqrt{\mathrm{30}+\mathrm{12}\sqrt{\mathrm{6}}} \\ $$
Question Number 29907 Answers: 1 Comments: 5
Question Number 29896 Answers: 5 Comments: 1
Pg 1793 Pg 1794 Pg 1795 Pg 1796 Pg 1797 Pg 1798 Pg 1799 Pg 1800 Pg 1801 Pg 1802
Terms of Service
Privacy Policy
Contact: info@tinkutara.com