Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1798

Question Number 29456    Answers: 0   Comments: 1

let give F(x)= ∫_x ^(2x) (dt/(√(1+t^2 +t^4 ))) 1) calculate (dF/dx)(x) 2)find lim_(x→+∞) F(x) and lim_(x→+∞) ((F(x))/x) .

$${let}\:{give}\:{F}\left({x}\right)=\:\int_{{x}} ^{\mathrm{2}{x}} \:\:\:\frac{{dt}}{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} +{t}^{\mathrm{4}} }}\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\frac{{dF}}{{dx}}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{x}\rightarrow+\infty} {F}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow+\infty} \:\frac{{F}\left({x}\right)}{{x}}\:. \\ $$

Question Number 29455    Answers: 1   Comments: 1

find ∫ 3^(√(2x+1)) dx .

$${find}\:\int\:\:\mathrm{3}^{\sqrt{\mathrm{2}{x}+\mathrm{1}}} \:{dx}\:. \\ $$

Question Number 29454    Answers: 0   Comments: 1

f is a function increasing and C^1 on [a,b] prove ∫_(f(a)) ^(f(b)) f^(−1) (t)dt = ∫_a ^b x f^′ (x)dx

$${f}\:{is}\:{a}\:{function}\:{increasing}\:{and}\:{C}^{\mathrm{1}} {on}\:\left[{a},{b}\right]\:{prove} \\ $$$$\:\int_{{f}\left({a}\right)} ^{{f}\left({b}\right)} \:{f}^{−\mathrm{1}} \left({t}\right){dt}\:=\:\int_{{a}} ^{{b}} \:{x}\:{f}^{'} \left({x}\right){dx}\: \\ $$

Question Number 29453    Answers: 0   Comments: 0

study and give the graph of the function f(x)= (x/(1+e^(−(1/x)) )) .

$${study}\:{and}\:{give}\:{the}\:{graph}\:{of}\:{the}\:{function} \\ $$$${f}\left({x}\right)=\:\:\:\:\frac{{x}}{\mathrm{1}+{e}^{−\frac{\mathrm{1}}{{x}}} }\:. \\ $$

Question Number 29452    Answers: 0   Comments: 1

find lim_(n→+∞) Π_(k=1) ^n (1 +(k/n))^(1/n) .

$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:\prod_{{k}=\mathrm{1}} ^{{n}} \:\:\left(\mathrm{1}\:+\frac{{k}}{{n}}\right)^{\frac{\mathrm{1}}{{n}}} \:\:. \\ $$

Question Number 29451    Answers: 0   Comments: 1

find ∫_0 ^(π/4) ln(1+tanx)dx .

$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:{ln}\left(\mathrm{1}+{tanx}\right){dx}\:. \\ $$

Question Number 29450    Answers: 0   Comments: 1

find lim_(n→+∞) (1/n^2 )^n (√((n^2 +1^2 )(n^2 +2^2 )....(n^2 +n^(2) ) .))

$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:^{{n}} \sqrt{\left({n}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} \right)\left({n}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} \right)....\left({n}^{\mathrm{2}} \:+{n}^{\left.\mathrm{2}\right)\:} .\right.} \\ $$

Question Number 29449    Answers: 0   Comments: 0

find lim_(n→+∞) ^ ^n (√(n!)) .n^(−(n+1)) .

$${find}\:{lim}_{{n}\rightarrow+\infty} ^{} \:^{{n}} \sqrt{{n}!}\:.{n}^{−\left({n}+\mathrm{1}\right)} . \\ $$

Question Number 29448    Answers: 0   Comments: 0

find lim_(x→1) ∫_x ^x^2 ((cos(πt))/(ln(t)))dt .

$${find}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\int_{{x}} ^{{x}^{\mathrm{2}} } \:\:\frac{{cos}\left(\pi{t}\right)}{{ln}\left({t}\right)}{dt}\:. \\ $$

Question Number 29447    Answers: 0   Comments: 0

find A_n = ∫_0 ^∞ (dx/((1+x^2 )^n )) with n from N^★ .

$${find}\:\:\:{A}_{{n}} =\:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:\:{with}\:{n}\:{from}\:{N}^{\bigstar} . \\ $$

Question Number 29446    Answers: 1   Comments: 1

let give a<1 find the value of f(a)= ∫_0 ^(π/2) (dx/(1−acos^2 x)).

$${let}\:{give}\:{a}<\mathrm{1}\:{find}\:{the}\:{value}\:{of} \\ $$$${f}\left({a}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\mathrm{1}−{acos}^{\mathrm{2}} {x}}. \\ $$

Question Number 29445    Answers: 1   Comments: 0

find ∫ (dx/(sinx +sin(2x))) .

$${find}\:\:\:\int\:\:\:\:\:\:\:\frac{{dx}}{{sinx}\:+{sin}\left(\mathrm{2}{x}\right)}\:. \\ $$

Question Number 29444    Answers: 0   Comments: 1

find ∫_3 ^4 (dx/(x^3 −2x^2 +x−2)) .

$${find}\:\int_{\mathrm{3}} ^{\mathrm{4}} \:\:\:\:\:\:\frac{{dx}}{{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +{x}−\mathrm{2}}\:. \\ $$

Question Number 29443    Answers: 1   Comments: 0

find ∫_0 ^π ((sinx)/(√(1+sin^2 x)))dx

$${find}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{sinx}}{\sqrt{\mathrm{1}+{sin}^{\mathrm{2}} {x}}}{dx} \\ $$

Question Number 29442    Answers: 1   Comments: 0

splve the d.e xy^′ =(√(x^2 +y^2 )) +y with x>0

$${splve}\:{the}\:{d}.{e}\:\:\:{xy}^{'} =\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:}\:+{y}\:\:{with}\:{x}>\mathrm{0} \\ $$

Question Number 29441    Answers: 0   Comments: 1

find ∫ (x^2 /((2−x^2 )(√(1−x^2 ))))dx

$${find}\:\int\:\:\frac{{x}^{\mathrm{2}} }{\left(\mathrm{2}−{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 29440    Answers: 0   Comments: 0

find ∫_0 ^π ((cosx)/((2+cosx)(3+cosx)))dx

$${find}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\:\frac{{cosx}}{\left(\mathrm{2}+{cosx}\right)\left(\mathrm{3}+{cosx}\right)}{dx} \\ $$

Question Number 29439    Answers: 1   Comments: 0

find ∫_0 ^π (dx/(2+cosx)) .

$${find}\:\int_{\mathrm{0}} ^{\pi} \:\frac{{dx}}{\mathrm{2}+{cosx}}\:. \\ $$

Question Number 29433    Answers: 1   Comments: 0

4(2x^2 )=8^x

$$\mathrm{4}\left(\mathrm{2x}^{\mathrm{2}} \right)=\mathrm{8}^{\mathrm{x}} \\ $$

Question Number 29420    Answers: 1   Comments: 2

Question Number 29418    Answers: 1   Comments: 1

Question Number 29413    Answers: 1   Comments: 1

Question Number 29415    Answers: 0   Comments: 0

Question Number 29405    Answers: 0   Comments: 1

Fluids

$${Fluids} \\ $$

Question Number 29400    Answers: 2   Comments: 1

Question Number 29384    Answers: 0   Comments: 3

Please can it be proven by another means that ∫tan^2 xdx=tanx+x +c

$${Please}\:{can}\:{it}\:{be}\:{proven}\:{by}\:{another} \\ $$$${means}\:{that}\: \\ $$$$ \\ $$$$\:\:\:\:\:\int\mathrm{tan}\:^{\mathrm{2}} {xdx}={tanx}+{x}\:+{c} \\ $$

  Pg 1793      Pg 1794      Pg 1795      Pg 1796      Pg 1797      Pg 1798      Pg 1799      Pg 1800      Pg 1801      Pg 1802   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com