Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1797

Question Number 29444    Answers: 0   Comments: 1

find ∫_3 ^4 (dx/(x^3 −2x^2 +x−2)) .

$${find}\:\int_{\mathrm{3}} ^{\mathrm{4}} \:\:\:\:\:\:\frac{{dx}}{{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +{x}−\mathrm{2}}\:. \\ $$

Question Number 29443    Answers: 1   Comments: 0

find ∫_0 ^π ((sinx)/(√(1+sin^2 x)))dx

$${find}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{sinx}}{\sqrt{\mathrm{1}+{sin}^{\mathrm{2}} {x}}}{dx} \\ $$

Question Number 29442    Answers: 1   Comments: 0

splve the d.e xy^′ =(√(x^2 +y^2 )) +y with x>0

$${splve}\:{the}\:{d}.{e}\:\:\:{xy}^{'} =\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:}\:+{y}\:\:{with}\:{x}>\mathrm{0} \\ $$

Question Number 29441    Answers: 0   Comments: 1

find ∫ (x^2 /((2−x^2 )(√(1−x^2 ))))dx

$${find}\:\int\:\:\frac{{x}^{\mathrm{2}} }{\left(\mathrm{2}−{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 29440    Answers: 0   Comments: 0

find ∫_0 ^π ((cosx)/((2+cosx)(3+cosx)))dx

$${find}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\:\frac{{cosx}}{\left(\mathrm{2}+{cosx}\right)\left(\mathrm{3}+{cosx}\right)}{dx} \\ $$

Question Number 29439    Answers: 1   Comments: 0

find ∫_0 ^π (dx/(2+cosx)) .

$${find}\:\int_{\mathrm{0}} ^{\pi} \:\frac{{dx}}{\mathrm{2}+{cosx}}\:. \\ $$

Question Number 29433    Answers: 1   Comments: 0

4(2x^2 )=8^x

$$\mathrm{4}\left(\mathrm{2x}^{\mathrm{2}} \right)=\mathrm{8}^{\mathrm{x}} \\ $$

Question Number 29420    Answers: 1   Comments: 2

Question Number 29418    Answers: 1   Comments: 1

Question Number 29413    Answers: 1   Comments: 1

Question Number 29415    Answers: 0   Comments: 0

Question Number 29405    Answers: 0   Comments: 1

Fluids

$${Fluids} \\ $$

Question Number 29400    Answers: 2   Comments: 1

Question Number 29384    Answers: 0   Comments: 3

Please can it be proven by another means that ∫tan^2 xdx=tanx+x +c

$${Please}\:{can}\:{it}\:{be}\:{proven}\:{by}\:{another} \\ $$$${means}\:{that}\: \\ $$$$ \\ $$$$\:\:\:\:\:\int\mathrm{tan}\:^{\mathrm{2}} {xdx}={tanx}+{x}\:+{c} \\ $$

Question Number 29424    Answers: 0   Comments: 8

Question Number 29425    Answers: 1   Comments: 1

Question Number 29365    Answers: 1   Comments: 0

the line x+y=2 cuts a circle x^2 +y^(2 ) =4 at two points. find the co−ordinates of points.

$${the}\:{line}\:{x}+{y}=\mathrm{2}\:{cuts}\:{a}\:{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}\:} =\mathrm{4}\:{at}\:{two}\:{points}.\:{find}\:{the}\:{co}−{ordinates}\:{of}\:{points}. \\ $$

Question Number 29364    Answers: 0   Comments: 0

Question Number 29363    Answers: 0   Comments: 1

Question Number 29362    Answers: 1   Comments: 2

Question Number 29360    Answers: 2   Comments: 1

Two stones are thrown up simultaneously from the edge of a cliff 200m high with initial speeds of 15ms^(−1) and 30ms^(−1) . Verify that the graph shown below correctly represents the time variation of the relative position of the second stone with respect to the first.Neglect air resistance and assume that the stones do not rebound.Take g=10m/s^2 . Give the equations of the linear and curved parts of the plot.

$${Two}\:{stones}\:{are}\:{thrown}\:{up}\: \\ $$$${simultaneously}\:{from}\:{the}\:{edge}\:{of} \\ $$$${a}\:{cliff}\:\mathrm{200}{m}\:{high}\:{with}\:{initial} \\ $$$${speeds}\:{of}\:\mathrm{15}{ms}^{−\mathrm{1}} \:{and}\:\mathrm{30}{ms}^{−\mathrm{1}} . \\ $$$${Verify}\:{that}\:{the}\:{graph}\:{shown} \\ $$$${below}\:{correctly}\:{represents}\:{the} \\ $$$${time}\:{variation}\:{of}\:{the}\:{relative} \\ $$$${position}\:{of}\:{the}\:{second}\:{stone} \\ $$$${with}\:{respect}\:{to}\:{the}\:{first}.{Neglect} \\ $$$${air}\:{resistance}\:{and}\:{assume}\:{that} \\ $$$${the}\:{stones}\:{do}\:{not}\:{rebound}.{Take} \\ $$$${g}=\mathrm{10}{m}/{s}^{\mathrm{2}} .\:{Give}\:{the}\:{equations}\:{of} \\ $$$${the}\:{linear}\:{and}\:{curved}\:{parts}\:{of} \\ $$$${the}\:{plot}. \\ $$

Question Number 29359    Answers: 1   Comments: 0

On a two lane road,car A is travelling with a speed of 36km/h. Two cars B and C approach A in opposite directions with a speed of 54km/h each.At a certain instant, when the distance AB is equal to AC,both being 1km,B decides to overtake A before C does.What minimum acceleration of carB is required to avoid an accident?

$${On}\:{a}\:{two}\:{lane}\:{road},{car}\:{A}\:{is} \\ $$$${travelling}\:{with}\:{a}\:{speed}\:{of}\:\mathrm{36}{km}/{h}. \\ $$$${Two}\:{cars}\:{B}\:{and}\:{C}\:{approach}\:{A}\:{in} \\ $$$${opposite}\:{directions}\:{with}\:{a}\:{speed}\:{of} \\ $$$$\mathrm{54}{km}/{h}\:{each}.{At}\:{a}\:{certain}\:{instant}, \\ $$$${when}\:{the}\:{distance}\:{AB}\:{is}\:{equal} \\ $$$${to}\:{AC},{both}\:{being}\:\mathrm{1}{km},{B}\:{decides} \\ $$$${to}\:{overtake}\:{A}\:{before}\:{C}\:{does}.{What} \\ $$$${minimum}\:{acceleration}\:{of}\:{carB} \\ $$$${is}\:{required}\:{to}\:{avoid}\:{an}\:{accident}? \\ $$

Question Number 29354    Answers: 2   Comments: 0

3sin^2 θ −sin θcos θ −4cos^2 θ=0 find the values of θ if θ lies between 0 and 360

$$\mathrm{3sin}\:^{\mathrm{2}} \theta\:−\mathrm{sin}\:\theta\mathrm{cos}\:\theta\:−\mathrm{4cos}\:^{\mathrm{2}} \theta=\mathrm{0} \\ $$$${find}\:{the}\:{values}\:{of}\:\theta\:{if}\:\theta\:{lies} \\ $$$${between}\:\mathrm{0}\:{and}\:\mathrm{360} \\ $$

Question Number 29349    Answers: 0   Comments: 1

let give f(x)= (x^n −1) e^(−x) with n from N^★ find f^((n)) (0) .

$${let}\:{give}\:{f}\left({x}\right)=\:\left({x}^{{n}} −\mathrm{1}\right)\:{e}^{−{x}} \:\:{with}\:{n}\:{from}\:{N}^{\bigstar} \: \\ $$$${find}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right)\:. \\ $$

Question Number 29347    Answers: 0   Comments: 0

y^((1)) +((2/(xln x))+(((1−4x^2 ln x))/(x(1−2xln x))))y=0

$${y}^{\left(\mathrm{1}\right)} +\left(\frac{\mathrm{2}}{{x}\mathrm{ln}\:{x}}+\frac{\left(\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} \mathrm{ln}\:{x}\right)}{{x}\left(\mathrm{1}−\mathrm{2}{x}\mathrm{ln}\:{x}\right)}\right){y}=\mathrm{0} \\ $$

Question Number 29345    Answers: 1   Comments: 0

solve simultanrodly x+y=5.....(1) x^y +y^x =17.....(2)

$$\mathrm{solve}\:\mathrm{simultanrodly} \\ $$$$ \\ $$$$\mathrm{x}+\mathrm{y}=\mathrm{5}.....\left(\mathrm{1}\right) \\ $$$$\mathrm{x}^{\mathrm{y}} +\mathrm{y}^{\mathrm{x}} =\mathrm{17}.....\left(\mathrm{2}\right) \\ $$

  Pg 1792      Pg 1793      Pg 1794      Pg 1795      Pg 1796      Pg 1797      Pg 1798      Pg 1799      Pg 1800      Pg 1801   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com