Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1797
Question Number 27677 Answers: 1 Comments: 4
Question Number 27681 Answers: 0 Comments: 2
$${Find}\:{square}\:{root}\:{of}\:\mathrm{7}−\mathrm{30}\sqrt{\mathrm{2}}{i}\:. \\ $$
Question Number 27673 Answers: 0 Comments: 1
Question Number 27667 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{the}\:\mathrm{ex}−\mathrm{radii}\:\:{r}_{\mathrm{1}} \:,\:{r}_{\mathrm{2}} \:,\:{r}_{\mathrm{3}} \:\mathrm{of}\:\bigtriangleup{ABC} \\ $$$$\mathrm{are}\:\mathrm{in}\:\mathrm{HP},\:\mathrm{then}\:\mathrm{its}\:\mathrm{sides}\:\mathrm{are}\:\mathrm{in} \\ $$
Question Number 27666 Answers: 0 Comments: 0
$${let}\:{give}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{{n}} }{\mathrm{1}+{x}^{{n}} }{dx} \\ $$$$\left(\mathrm{1}\right)\:{prove}\:{that}\:\:{lim}_{{n}−>\propto} {I}_{{n}} =\mathrm{0} \\ $$$$\left(\mathrm{2}\right){calculate}\:{I}_{{n}} \:+{I}_{{n}+\mathrm{1}} \\ $$$$\left(\mathrm{3}\right)\:{find}\:\:\sum_{{n}=\mathrm{1}} ^{\propto} \frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:. \\ $$
Question Number 28200 Answers: 0 Comments: 1
$${let}\:{give}\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:{and}\:{J}=\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\frac{{x}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{xy}\right)}{dxdy} \\ $$$${calculate}\:{J}\:{by}\:{two}\:{methods}\:{then}\:{find}\:{the}\:{value}\:{of}\:{I}. \\ $$
Question Number 27664 Answers: 0 Comments: 1
$${let}\:{give}\:{the}\:{sequence}\:{V}_{{n}} =\:\prod_{{k}=\mathrm{1}} ^{{k}={n}} \left(\mathrm{1}+\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\:\right)^{\frac{\mathrm{1}}{{n}}} \\ $$$${find}\:{the}\:{value}\:{of}\:{lim}\:_{{n}−>\propto} \:{V}_{{n}} \:\:. \\ $$
Question Number 27663 Answers: 0 Comments: 1
$${let}\:{give}\:\:{U}_{{n}} ={n}\:\left(\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:+\:\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} +{n}^{\mathrm{2}} }+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} +{n}^{\mathrm{2}} }\:+....\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)^{\mathrm{2}} +{n}^{\mathrm{2}} }\right) \\ $$$${find}\:{lim}_{{n}−>\propto} \:\:{U}_{{n}} \:\:\:. \\ $$$$ \\ $$
Question Number 27662 Answers: 0 Comments: 0
$${factorize}\:{in}\:{C}\left[{x}\right]\:\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:\:+{z}^{\mathrm{2}} \:\:.\: \\ $$
Question Number 27655 Answers: 0 Comments: 0
$${what}\:{is}\:{reration}\:{betwen}\:{int} \\ $$$${ensity}\:{o}\:{diffraction}\:{and}\:{sli} \\ $$$${t}\:{witdh} \\ $$
Question Number 27643 Answers: 2 Comments: 1
Question Number 27651 Answers: 2 Comments: 2
$$\mathrm{A}\:\mathrm{positive}\:\mathrm{number}\:\mathrm{has}\:\mathrm{8}\:\mathrm{distinct}\:\mathrm{divisors} \\ $$$$\mathrm{Lets}\:\mathrm{say}\:{a},\:{b},\:{c},\:{d},\:{e},\:{f},\:{g}\:\mathrm{and}\:{h} \\ $$$$\mathrm{Given}\:\:{a}\:.\:{b}\:.\:{c}\:.\:{d}\:.\:{e}\:.\:{f}\:.\:{g}\:.\:{h}\:=\:\mathrm{3111696} \\ $$$$\mathrm{Find}\:\mathrm{that}\:\mathrm{number} \\ $$
Question Number 27640 Answers: 1 Comments: 0
Question Number 27635 Answers: 0 Comments: 0
Question Number 27627 Answers: 1 Comments: 1
Question Number 27624 Answers: 0 Comments: 3
$$\left({D}^{\mathrm{2}} +\mathrm{2}{D}+\mathrm{1}\right){y}={x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1} \\ $$
Question Number 27621 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:. \\ $$
Question Number 27620 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{x}^{\mathrm{2}} } }{\mathrm{3}+{x}^{\mathrm{2}} }{dx}\:. \\ $$
Question Number 27619 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\mathrm{2}{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}. \\ $$
Question Number 27618 Answers: 1 Comments: 0
$${Find}\:{the}\:{range}\:{of}\:{y}={x}\left({x}^{\mathrm{6}} −\mathrm{1}\right).{For} \\ $$$${which}\:{y}=\mathrm{0} \\ $$
Question Number 27616 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{x}\right){dx}\:\:. \\ $$
Question Number 27615 Answers: 0 Comments: 2
$$\int{x}^{\mathrm{5}/\mathrm{2}} \left(\mathrm{1}−{x}\right)^{\mathrm{3}/\mathrm{2}} {dx} \\ $$
Question Number 27614 Answers: 0 Comments: 2
$$\int\frac{{cosx}}{\mathrm{2}−{cosx}}{dx} \\ $$
Question Number 27613 Answers: 1 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left[{x}\right]\:−{x}} {dx}\:\:. \\ $$
Question Number 27612 Answers: 1 Comments: 0
$$\int\frac{\mathrm{1}}{\mathrm{3}+{cos}^{\mathrm{2}} {x}}{dx} \\ $$
Question Number 27611 Answers: 1 Comments: 0
$$\int\frac{\mathrm{1}}{\mathrm{2sin}\:^{\mathrm{2}} {x}\:+\:\mathrm{4cos}\:^{\mathrm{2}} {x}}{dx} \\ $$
Pg 1792 Pg 1793 Pg 1794 Pg 1795 Pg 1796 Pg 1797 Pg 1798 Pg 1799 Pg 1800 Pg 1801
Terms of Service
Privacy Policy
Contact: info@tinkutara.com