Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1797

Question Number 29974    Answers: 1   Comments: 0

(√(5=?))

$$\sqrt{\mathrm{5}=?} \\ $$

Question Number 29973    Answers: 0   Comments: 1

find Σ_(n=1) ^∞ ((sin(nα))/n) x^n with −1<x<1.

$${find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({n}\alpha\right)}{{n}}\:{x}^{{n}} \:{with}\:\:−\mathrm{1}<{x}<\mathrm{1}. \\ $$

Question Number 29972    Answers: 0   Comments: 1

let give ∣x∣<1 find ∫_0 ^(π/2) (dθ/(√(1−x^2 cos^2 θ))) .

$${let}\:{give}\:\mid{x}\mid<\mathrm{1}\:{find}\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{d}\theta}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta}}\:. \\ $$

Question Number 29971    Answers: 0   Comments: 2

find J(x)= ∫_0 ^∞ (dt/(x+e^t )) ?.

$${find}\:{J}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{x}+{e}^{{t}} }\:\:\:\:?. \\ $$

Question Number 29970    Answers: 0   Comments: 1

a>0 and b>0 if (1/((1−ax)(1−bx)))=Σ_n a_n x^n find the sequence a_n .

$${a}>\mathrm{0}\:{and}\:{b}>\mathrm{0}\:\:{if}\:\:\:\frac{\mathrm{1}}{\left(\mathrm{1}−{ax}\right)\left(\mathrm{1}−{bx}\right)}=\sum_{{n}} \:\:{a}_{{n}} \:{x}^{{n}} \\ $$$${find}\:{the}\:{sequence}\:{a}_{{n}} . \\ $$

Question Number 30000    Answers: 1   Comments: 1

If cos α = sin β sin φ=sin γ cos ψ cos β = sin γ sin ψ =sin α cos θ cos γ = sin α sin θ =sin β cos φ then find cos α, cos β , cos γ briefly and if possible linearly in terms of only sin θ, cos θ, sin φ, cos φ, sin ψ, cos ψ .

$${If}\:\mathrm{cos}\:\alpha\:=\:\mathrm{sin}\:\beta\:\mathrm{sin}\:\phi=\mathrm{sin}\:\gamma\:\mathrm{cos}\:\psi \\ $$$$\:\:\:\:\:\:\mathrm{cos}\:\beta\:=\:\mathrm{sin}\:\gamma\:\mathrm{sin}\:\psi\:=\mathrm{sin}\:\alpha\:\mathrm{cos}\:\theta \\ $$$$\:\:\:\:\:\:\mathrm{cos}\:\gamma\:=\:\mathrm{sin}\:\alpha\:\mathrm{sin}\:\theta\:=\mathrm{sin}\:\beta\:\mathrm{cos}\:\phi \\ $$$${then}\:{find}\:\:\mathrm{cos}\:\alpha,\:\mathrm{cos}\:\beta\:,\:\mathrm{cos}\:\gamma\:\:\: \\ $$$${briefly}\:{and}\:{if}\:{possible}\:{linearly} \\ $$$${in}\:{terms}\:{of}\:{only}\:\mathrm{sin}\:\theta,\:\mathrm{cos}\:\theta, \\ $$$$\mathrm{sin}\:\phi,\:\mathrm{cos}\:\phi,\:\mathrm{sin}\:\psi,\:\mathrm{cos}\:\psi\:. \\ $$

Question Number 29960    Answers: 1   Comments: 0

Question Number 29957    Answers: 1   Comments: 0

∫3xdx

$$\int\mathrm{3}{x}\mathrm{d}{x} \\ $$

Question Number 30032    Answers: 0   Comments: 3

(x+1)^x −x^((x+1)) =1 x=?

$$\left({x}+\mathrm{1}\right)^{{x}} −{x}^{\left({x}+\mathrm{1}\right)} =\mathrm{1} \\ $$$${x}=? \\ $$

Question Number 29953    Answers: 0   Comments: 2

Question Number 29924    Answers: 1   Comments: 5

Question Number 29909    Answers: 2   Comments: 1

please solve this: (√(30+12(√6)))

$${please}\:{solve}\:{this}:\:\:\sqrt{\mathrm{30}+\mathrm{12}\sqrt{\mathrm{6}}} \\ $$

Question Number 29907    Answers: 1   Comments: 5

Question Number 29896    Answers: 5   Comments: 1

Question Number 30655    Answers: 0   Comments: 0

Question Number 29880    Answers: 0   Comments: 3

Question Number 29875    Answers: 0   Comments: 0

Prove the convergence or divergent of (((n − 1)/n))_(n = 1) ^∞

$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{or}\:\mathrm{divergent}\:\mathrm{of}\:\:\:\:\:\:\:\:\:\:\left(\frac{\mathrm{n}\:−\:\mathrm{1}}{\mathrm{n}}\right)_{\mathrm{n}\:=\:\mathrm{1}} ^{\infty} \\ $$$$ \\ $$

Question Number 29877    Answers: 0   Comments: 2

Question Number 29857    Answers: 0   Comments: 0

find ∫_0 ^(+∞) ((ln(x))/((1+x)^3 ))dx .

$${find}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{3}} }{dx}\:. \\ $$

Question Number 29856    Answers: 0   Comments: 1

find ∫_0 ^(2π) ((cos(nθ))/(2+3cosθ))dθ . n from N.

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}\left({n}\theta\right)}{\mathrm{2}+\mathrm{3}{cos}\theta}{d}\theta\:.\:\:{n}\:{from}\:{N}. \\ $$

Question Number 29855    Answers: 1   Comments: 1

find ∫_0 ^∞ (x^2 /((1+x^2 )( 3+x^2 )))dx .

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\:\mathrm{3}+{x}^{\mathrm{2}} \right)}{dx}\:. \\ $$

Question Number 29854    Answers: 0   Comments: 1

find ∫_(−∞) ^(+∞) (((x^2 +2)dx)/(x^4 +8x^2 −16x +20)) .

$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\:\frac{\left({x}^{\mathrm{2}} +\mathrm{2}\right){dx}}{{x}^{\mathrm{4}} \:+\mathrm{8}{x}^{\mathrm{2}} −\mathrm{16}{x}\:+\mathrm{20}}\:. \\ $$

Question Number 29853    Answers: 0   Comments: 1

find ∫_(−∞) ^(+∞) (dx/(x^2 +2ix +2−4i)) .

$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{2}{ix}\:+\mathrm{2}−\mathrm{4}{i}}\:. \\ $$

Question Number 29852    Answers: 0   Comments: 0

let f(z) =z cos^2 ((π/z)) find Res(f,0).

$${let}\:{f}\left({z}\right)\:={z}\:{cos}^{\mathrm{2}} \left(\frac{\pi}{{z}}\right)\:\:{find}\:{Res}\left({f},\mathrm{0}\right). \\ $$

Question Number 29851    Answers: 0   Comments: 0

let give f(z)=((tanz −z)/((1−cosz)^2 )) find Res(f,0).

$${let}\:{give}\:{f}\left({z}\right)=\frac{{tanz}\:−{z}}{\left(\mathrm{1}−{cosz}\right)^{\mathrm{2}} }\:\:{find}\:{Res}\left({f},\mathrm{0}\right). \\ $$

Question Number 29850    Answers: 0   Comments: 0

find I = ∫_0 ^∞ (((1+x)^(−(1/4)) −(1+x)^(−(3/4)) )/x)dx .

$${find}\:\:{I}\:\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\left(\mathrm{1}+{x}\right)^{−\frac{\mathrm{1}}{\mathrm{4}}} \:\:−\left(\mathrm{1}+{x}\right)^{−\frac{\mathrm{3}}{\mathrm{4}}} }{{x}}{dx}\:. \\ $$

  Pg 1792      Pg 1793      Pg 1794      Pg 1795      Pg 1796      Pg 1797      Pg 1798      Pg 1799      Pg 1800      Pg 1801   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com