Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1797
Question Number 29974 Answers: 1 Comments: 0
$$\sqrt{\mathrm{5}=?} \\ $$
Question Number 29973 Answers: 0 Comments: 1
$${find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({n}\alpha\right)}{{n}}\:{x}^{{n}} \:{with}\:\:−\mathrm{1}<{x}<\mathrm{1}. \\ $$
Question Number 29972 Answers: 0 Comments: 1
$${let}\:{give}\:\mid{x}\mid<\mathrm{1}\:{find}\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{d}\theta}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta}}\:. \\ $$
Question Number 29971 Answers: 0 Comments: 2
$${find}\:{J}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{x}+{e}^{{t}} }\:\:\:\:?. \\ $$
Question Number 29970 Answers: 0 Comments: 1
$${a}>\mathrm{0}\:{and}\:{b}>\mathrm{0}\:\:{if}\:\:\:\frac{\mathrm{1}}{\left(\mathrm{1}−{ax}\right)\left(\mathrm{1}−{bx}\right)}=\sum_{{n}} \:\:{a}_{{n}} \:{x}^{{n}} \\ $$$${find}\:{the}\:{sequence}\:{a}_{{n}} . \\ $$
Question Number 30000 Answers: 1 Comments: 1
$${If}\:\mathrm{cos}\:\alpha\:=\:\mathrm{sin}\:\beta\:\mathrm{sin}\:\phi=\mathrm{sin}\:\gamma\:\mathrm{cos}\:\psi \\ $$$$\:\:\:\:\:\:\mathrm{cos}\:\beta\:=\:\mathrm{sin}\:\gamma\:\mathrm{sin}\:\psi\:=\mathrm{sin}\:\alpha\:\mathrm{cos}\:\theta \\ $$$$\:\:\:\:\:\:\mathrm{cos}\:\gamma\:=\:\mathrm{sin}\:\alpha\:\mathrm{sin}\:\theta\:=\mathrm{sin}\:\beta\:\mathrm{cos}\:\phi \\ $$$${then}\:{find}\:\:\mathrm{cos}\:\alpha,\:\mathrm{cos}\:\beta\:,\:\mathrm{cos}\:\gamma\:\:\: \\ $$$${briefly}\:{and}\:{if}\:{possible}\:{linearly} \\ $$$${in}\:{terms}\:{of}\:{only}\:\mathrm{sin}\:\theta,\:\mathrm{cos}\:\theta, \\ $$$$\mathrm{sin}\:\phi,\:\mathrm{cos}\:\phi,\:\mathrm{sin}\:\psi,\:\mathrm{cos}\:\psi\:. \\ $$
Question Number 29960 Answers: 1 Comments: 0
Question Number 29957 Answers: 1 Comments: 0
$$\int\mathrm{3}{x}\mathrm{d}{x} \\ $$
Question Number 30032 Answers: 0 Comments: 3
$$\left({x}+\mathrm{1}\right)^{{x}} −{x}^{\left({x}+\mathrm{1}\right)} =\mathrm{1} \\ $$$${x}=? \\ $$
Question Number 29953 Answers: 0 Comments: 2
Question Number 29924 Answers: 1 Comments: 5
Question Number 29909 Answers: 2 Comments: 1
$${please}\:{solve}\:{this}:\:\:\sqrt{\mathrm{30}+\mathrm{12}\sqrt{\mathrm{6}}} \\ $$
Question Number 29907 Answers: 1 Comments: 5
Question Number 29896 Answers: 5 Comments: 1
Question Number 30655 Answers: 0 Comments: 0
Question Number 29880 Answers: 0 Comments: 3
Question Number 29875 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{or}\:\mathrm{divergent}\:\mathrm{of}\:\:\:\:\:\:\:\:\:\:\left(\frac{\mathrm{n}\:−\:\mathrm{1}}{\mathrm{n}}\right)_{\mathrm{n}\:=\:\mathrm{1}} ^{\infty} \\ $$$$ \\ $$
Question Number 29877 Answers: 0 Comments: 2
Question Number 29857 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{3}} }{dx}\:. \\ $$
Question Number 29856 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}\left({n}\theta\right)}{\mathrm{2}+\mathrm{3}{cos}\theta}{d}\theta\:.\:\:{n}\:{from}\:{N}. \\ $$
Question Number 29855 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\:\mathrm{3}+{x}^{\mathrm{2}} \right)}{dx}\:. \\ $$
Question Number 29854 Answers: 0 Comments: 1
$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\:\frac{\left({x}^{\mathrm{2}} +\mathrm{2}\right){dx}}{{x}^{\mathrm{4}} \:+\mathrm{8}{x}^{\mathrm{2}} −\mathrm{16}{x}\:+\mathrm{20}}\:. \\ $$
Question Number 29853 Answers: 0 Comments: 1
$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{2}{ix}\:+\mathrm{2}−\mathrm{4}{i}}\:. \\ $$
Question Number 29852 Answers: 0 Comments: 0
$${let}\:{f}\left({z}\right)\:={z}\:{cos}^{\mathrm{2}} \left(\frac{\pi}{{z}}\right)\:\:{find}\:{Res}\left({f},\mathrm{0}\right). \\ $$
Question Number 29851 Answers: 0 Comments: 0
$${let}\:{give}\:{f}\left({z}\right)=\frac{{tanz}\:−{z}}{\left(\mathrm{1}−{cosz}\right)^{\mathrm{2}} }\:\:{find}\:{Res}\left({f},\mathrm{0}\right). \\ $$
Question Number 29850 Answers: 0 Comments: 0
$${find}\:\:{I}\:\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\left(\mathrm{1}+{x}\right)^{−\frac{\mathrm{1}}{\mathrm{4}}} \:\:−\left(\mathrm{1}+{x}\right)^{−\frac{\mathrm{3}}{\mathrm{4}}} }{{x}}{dx}\:. \\ $$
Pg 1792 Pg 1793 Pg 1794 Pg 1795 Pg 1796 Pg 1797 Pg 1798 Pg 1799 Pg 1800 Pg 1801
Terms of Service
Privacy Policy
Contact: info@tinkutara.com