Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1794

Question Number 29415    Answers: 0   Comments: 0

Question Number 29405    Answers: 0   Comments: 1

Fluids

$${Fluids} \\ $$

Question Number 29400    Answers: 2   Comments: 1

Question Number 29384    Answers: 0   Comments: 3

Please can it be proven by another means that ∫tan^2 xdx=tanx+x +c

$${Please}\:{can}\:{it}\:{be}\:{proven}\:{by}\:{another} \\ $$$${means}\:{that}\: \\ $$$$ \\ $$$$\:\:\:\:\:\int\mathrm{tan}\:^{\mathrm{2}} {xdx}={tanx}+{x}\:+{c} \\ $$

Question Number 29424    Answers: 0   Comments: 8

Question Number 29425    Answers: 1   Comments: 1

Question Number 29365    Answers: 1   Comments: 0

the line x+y=2 cuts a circle x^2 +y^(2 ) =4 at two points. find the co−ordinates of points.

$${the}\:{line}\:{x}+{y}=\mathrm{2}\:{cuts}\:{a}\:{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}\:} =\mathrm{4}\:{at}\:{two}\:{points}.\:{find}\:{the}\:{co}−{ordinates}\:{of}\:{points}. \\ $$

Question Number 29364    Answers: 0   Comments: 0

Question Number 29363    Answers: 0   Comments: 1

Question Number 29362    Answers: 1   Comments: 2

Question Number 29360    Answers: 2   Comments: 1

Two stones are thrown up simultaneously from the edge of a cliff 200m high with initial speeds of 15ms^(−1) and 30ms^(−1) . Verify that the graph shown below correctly represents the time variation of the relative position of the second stone with respect to the first.Neglect air resistance and assume that the stones do not rebound.Take g=10m/s^2 . Give the equations of the linear and curved parts of the plot.

$${Two}\:{stones}\:{are}\:{thrown}\:{up}\: \\ $$$${simultaneously}\:{from}\:{the}\:{edge}\:{of} \\ $$$${a}\:{cliff}\:\mathrm{200}{m}\:{high}\:{with}\:{initial} \\ $$$${speeds}\:{of}\:\mathrm{15}{ms}^{−\mathrm{1}} \:{and}\:\mathrm{30}{ms}^{−\mathrm{1}} . \\ $$$${Verify}\:{that}\:{the}\:{graph}\:{shown} \\ $$$${below}\:{correctly}\:{represents}\:{the} \\ $$$${time}\:{variation}\:{of}\:{the}\:{relative} \\ $$$${position}\:{of}\:{the}\:{second}\:{stone} \\ $$$${with}\:{respect}\:{to}\:{the}\:{first}.{Neglect} \\ $$$${air}\:{resistance}\:{and}\:{assume}\:{that} \\ $$$${the}\:{stones}\:{do}\:{not}\:{rebound}.{Take} \\ $$$${g}=\mathrm{10}{m}/{s}^{\mathrm{2}} .\:{Give}\:{the}\:{equations}\:{of} \\ $$$${the}\:{linear}\:{and}\:{curved}\:{parts}\:{of} \\ $$$${the}\:{plot}. \\ $$

Question Number 29359    Answers: 1   Comments: 0

On a two lane road,car A is travelling with a speed of 36km/h. Two cars B and C approach A in opposite directions with a speed of 54km/h each.At a certain instant, when the distance AB is equal to AC,both being 1km,B decides to overtake A before C does.What minimum acceleration of carB is required to avoid an accident?

$${On}\:{a}\:{two}\:{lane}\:{road},{car}\:{A}\:{is} \\ $$$${travelling}\:{with}\:{a}\:{speed}\:{of}\:\mathrm{36}{km}/{h}. \\ $$$${Two}\:{cars}\:{B}\:{and}\:{C}\:{approach}\:{A}\:{in} \\ $$$${opposite}\:{directions}\:{with}\:{a}\:{speed}\:{of} \\ $$$$\mathrm{54}{km}/{h}\:{each}.{At}\:{a}\:{certain}\:{instant}, \\ $$$${when}\:{the}\:{distance}\:{AB}\:{is}\:{equal} \\ $$$${to}\:{AC},{both}\:{being}\:\mathrm{1}{km},{B}\:{decides} \\ $$$${to}\:{overtake}\:{A}\:{before}\:{C}\:{does}.{What} \\ $$$${minimum}\:{acceleration}\:{of}\:{carB} \\ $$$${is}\:{required}\:{to}\:{avoid}\:{an}\:{accident}? \\ $$

Question Number 29354    Answers: 2   Comments: 0

3sin^2 θ −sin θcos θ −4cos^2 θ=0 find the values of θ if θ lies between 0 and 360

$$\mathrm{3sin}\:^{\mathrm{2}} \theta\:−\mathrm{sin}\:\theta\mathrm{cos}\:\theta\:−\mathrm{4cos}\:^{\mathrm{2}} \theta=\mathrm{0} \\ $$$${find}\:{the}\:{values}\:{of}\:\theta\:{if}\:\theta\:{lies} \\ $$$${between}\:\mathrm{0}\:{and}\:\mathrm{360} \\ $$

Question Number 29349    Answers: 0   Comments: 1

let give f(x)= (x^n −1) e^(−x) with n from N^★ find f^((n)) (0) .

$${let}\:{give}\:{f}\left({x}\right)=\:\left({x}^{{n}} −\mathrm{1}\right)\:{e}^{−{x}} \:\:{with}\:{n}\:{from}\:{N}^{\bigstar} \: \\ $$$${find}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right)\:. \\ $$

Question Number 29347    Answers: 0   Comments: 0

y^((1)) +((2/(xln x))+(((1−4x^2 ln x))/(x(1−2xln x))))y=0

$${y}^{\left(\mathrm{1}\right)} +\left(\frac{\mathrm{2}}{{x}\mathrm{ln}\:{x}}+\frac{\left(\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} \mathrm{ln}\:{x}\right)}{{x}\left(\mathrm{1}−\mathrm{2}{x}\mathrm{ln}\:{x}\right)}\right){y}=\mathrm{0} \\ $$

Question Number 29345    Answers: 1   Comments: 0

solve simultanrodly x+y=5.....(1) x^y +y^x =17.....(2)

$$\mathrm{solve}\:\mathrm{simultanrodly} \\ $$$$ \\ $$$$\mathrm{x}+\mathrm{y}=\mathrm{5}.....\left(\mathrm{1}\right) \\ $$$$\mathrm{x}^{\mathrm{y}} +\mathrm{y}^{\mathrm{x}} =\mathrm{17}.....\left(\mathrm{2}\right) \\ $$

Question Number 29423    Answers: 0   Comments: 1

Question Number 29332    Answers: 1   Comments: 0

Question Number 29326    Answers: 1   Comments: 0

The unit digit of the square of a number and the units digit of the cube of the number are equal to the unit digit of the number. How many values are possible for the units digits of such numbers?

$$\mathrm{The}\:\mathrm{unit}\:\mathrm{digit}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square}\:\mathrm{of}\:\mathrm{a}\:\mathrm{number} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{units}\:\mathrm{digit}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cube}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{number}\:\mathrm{are}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{unit}\:\mathrm{digit}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{number}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{values}\:\mathrm{are}\: \\ $$$$\mathrm{possible}\:\mathrm{for}\:\mathrm{the}\:\mathrm{units}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{such} \\ $$$$\mathrm{numbers}? \\ $$

Question Number 29324    Answers: 1   Comments: 0

Question Number 29322    Answers: 0   Comments: 5

Question Number 29321    Answers: 0   Comments: 1

is it possible to divide an angle into three equal parts?

$$\mathrm{is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{divide}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{into}\:\mathrm{three}\:\mathrm{equal}\:\mathrm{parts}? \\ $$

Question Number 29320    Answers: 0   Comments: 1

Find the principal argument of ((−1+2i)/(1−3i)) .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{principal}\:\mathrm{argument}\:\mathrm{of}\:\frac{−\mathrm{1}+\mathrm{2i}}{\mathrm{1}−\mathrm{3i}}\:. \\ $$

Question Number 29319    Answers: 0   Comments: 0

mxmz]33]2n3xmxksnd

$$\left.{m}\left.{xmz}\right]\mathrm{33}\right]\mathrm{2}{n}\mathrm{3}{xmxksnd} \\ $$

Question Number 29313    Answers: 0   Comments: 0

Question Number 29311    Answers: 0   Comments: 0

∫(2x^3 −3x^2 +3x−1)^(1/5) dx and limit is from 0 to 1

$$\int\left(\mathrm{2}{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{5}}} {dx}\:{and}\:{limit}\:{is}\:{from}\:\mathrm{0}\:{to}\:\mathrm{1} \\ $$

  Pg 1789      Pg 1790      Pg 1791      Pg 1792      Pg 1793      Pg 1794      Pg 1795      Pg 1796      Pg 1797      Pg 1798   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com