Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 179

Question Number 201604    Answers: 2   Comments: 1

Question Number 201599    Answers: 1   Comments: 2

Question Number 201595    Answers: 3   Comments: 0

1) ∣((3+2x)/(3x))∣ ≤1 2) 1≤ ∣ ((x−3)/(1−2x))∣≤ 2 3) ((x^2 +2x−35)/(x+2)) > 0 4) −1 ≤ ((x+1)/(x−2)) ≤2

$$\left.\mathrm{1}\right)\:\:\mid\frac{\mathrm{3}+\mathrm{2}{x}}{\mathrm{3}{x}}\mid\:\leq\mathrm{1} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\mathrm{1}\leq\:\mid\:\frac{{x}−\mathrm{3}}{\mathrm{1}−\mathrm{2}{x}}\mid\leq\:\mathrm{2} \\ $$$$ \\ $$$$\left.\mathrm{3}\right)\:\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{35}}{{x}+\mathrm{2}}\:>\:\mathrm{0} \\ $$$$ \\ $$$$\left.\mathrm{4}\right)\:−\mathrm{1}\:\leq\:\frac{{x}+\mathrm{1}}{{x}−\mathrm{2}}\:\leq\mathrm{2} \\ $$

Question Number 201582    Answers: 0   Comments: 0

Solve.... y′′(t)−sin(t)y(t)=0 , y^((2)) (0)=0 , y^((1)) (0)=−1 , y(0)=0 L{y′′(t)−sin(t)y(t)}=0 s^2 F(s)−sy(0)−y′(0)−L{sin(t)y(t)}=0 Holy...×uck I already know y′′(t)−ty(t)=0 solution C_1 Ai(t)+C_2 Bi(t) But I Can′t Solve y′′(t)−sin(t)y(t)=0....

$$\mathrm{Solve}.... \\ $$$${y}''\left({t}\right)−\mathrm{sin}\left({t}\right){y}\left({t}\right)=\mathrm{0}\:,\: \\ $$$${y}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)=\mathrm{0}\:,\:{y}^{\left(\mathrm{1}\right)} \left(\mathrm{0}\right)=−\mathrm{1}\:,\:{y}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\boldsymbol{\mathcal{L}}\left\{{y}''\left({t}\right)−\mathrm{sin}\left({t}\right){y}\left({t}\right)\right\}=\mathrm{0} \\ $$$${s}^{\mathrm{2}} \boldsymbol{\mathrm{F}}\left({s}\right)−{sy}\left(\mathrm{0}\right)−{y}'\left(\mathrm{0}\right)−\boldsymbol{\mathcal{L}}\left\{\mathrm{sin}\left({t}\right){y}\left({t}\right)\right\}=\mathrm{0} \\ $$$$\mathrm{Holy}...×\mathrm{uck} \\ $$$$\mathrm{I}\:\mathrm{already}\:\mathrm{know}\:{y}''\left({t}\right)−{ty}\left({t}\right)=\mathrm{0}\:\:\:\mathrm{solution} \\ $$$$\mathrm{C}_{\mathrm{1}} \mathrm{Ai}\left({t}\right)+{C}_{\mathrm{2}} \mathrm{Bi}\left({t}\right) \\ $$$$\mathrm{But}\:\mathrm{I}\:\mathrm{Can}'\mathrm{t}\:\mathrm{Solve}\:{y}''\left({t}\right)−\mathrm{sin}\left({t}\right){y}\left({t}\right)=\mathrm{0}....\: \\ $$

Question Number 201581    Answers: 1   Comments: 0

Question Number 201573    Answers: 1   Comments: 0

Question Number 201562    Answers: 3   Comments: 0

Question Number 201561    Answers: 1   Comments: 0

Question Number 201553    Answers: 3   Comments: 0

Question Number 201548    Answers: 1   Comments: 0

Question Number 201547    Answers: 1   Comments: 0

Question Number 201546    Answers: 2   Comments: 4

∫Sin(Inx)dx

$$\:\:\:\int\boldsymbol{{Sin}}\left(\boldsymbol{{Inx}}\right)\boldsymbol{{dx}} \\ $$

Question Number 201545    Answers: 0   Comments: 0

Question Number 201544    Answers: 2   Comments: 0

Question Number 201533    Answers: 2   Comments: 0

Un = ln (cos (1/2^n ) ) show that Un ≤0

$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{Un}\:=\:{ln}\:\left({cos}\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:\right) \\ $$$$\:\:\:\:{show}\:\:{that}\:{Un}\:\leqslant\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 201534    Answers: 0   Comments: 1

let f(x)=tanx find f^((n)) (x) with n integr natural

$${let}\:{f}\left({x}\right)={tanx} \\ $$$${find}\:{f}^{\left({n}\right)} \left({x}\right)\:{with}\:{n}\:{integr} \\ $$$${natural} \\ $$

Question Number 201527    Answers: 1   Comments: 0

Question Number 201526    Answers: 1   Comments: 0

Question Number 201519    Answers: 3   Comments: 0

Question Number 201517    Answers: 1   Comments: 0

Question Number 201516    Answers: 1   Comments: 0

Question Number 201515    Answers: 1   Comments: 0

Question Number 201555    Answers: 1   Comments: 0

Question Number 201557    Answers: 2   Comments: 0

5 ∙ 555...5_( 50) find the sum of the digits of the product.

$$\mathrm{5}\:\centerdot\:\underset{\:\mathrm{50}} {\underbrace{\mathrm{555}...\mathrm{5}}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{product}. \\ $$

Question Number 201510    Answers: 1   Comments: 0

Question Number 201509    Answers: 1   Comments: 0

  Pg 174      Pg 175      Pg 176      Pg 177      Pg 178      Pg 179      Pg 180      Pg 181      Pg 182      Pg 183   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com