Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 179

Question Number 204477    Answers: 1   Comments: 0

lim_(n→∞) (2n∫_0 ^1 (x^n /(1+x^2 ))dx)^n =?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{2n}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\right)^{\mathrm{n}} =? \\ $$

Question Number 204472    Answers: 2   Comments: 0

Calculate ... Ω=Σ_(k=1) ^n ⌊(( 1)/( (e)^(1/k) −1)) ⌋ =?

$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Calculate}\:... \\ $$$$\:\:\:\:\:\:\:\Omega=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\lfloor\frac{\:\mathrm{1}}{\:\sqrt[{{k}}]{{e}}\:−\mathrm{1}}\:\rfloor\:=? \\ $$$$ \\ $$

Question Number 204471    Answers: 2   Comments: 0

Question Number 204469    Answers: 1   Comments: 0

Given the function f(x) = { ((2, 0< x <2)),((−2, −2 <x < 0)) :} of period 4 (a) sketch the graph of y = f(x) , for −6 < x < 6 (b) Find the Fourier coefficient a_0 , a_n , and b_n (c) write down the Fourier series. (d) hence show that Σ_(n=1) ^∞ (((−1)^n )/(2n−1)) = (π/4)

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{function}\:{f}\left({x}\right)\:=\:\begin{cases}{\mathrm{2},\:\mathrm{0}<\:{x}\:<\mathrm{2}}\\{−\mathrm{2},\:−\mathrm{2}\:<{x}\:<\:\mathrm{0}}\end{cases} \\ $$$$\mathrm{of}\:\mathrm{period}\:\mathrm{4} \\ $$$$\left(\mathrm{a}\right)\:\:\mathrm{sketch}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{of}\:{y}\:=\:{f}\left({x}\right)\:,\:\mathrm{for}\:−\mathrm{6}\:<\:{x}\:<\:\mathrm{6} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{Fourier}\:\mathrm{coefficient}\:{a}_{\mathrm{0}} ,\:{a}_{{n}} ,\:\mathrm{and}\:{b}_{{n}} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{write}\:\mathrm{down}\:\mathrm{the}\:\mathrm{Fourier}\:\mathrm{series}.\: \\ $$$$\left(\mathrm{d}\right)\:\mathrm{hence}\:\mathrm{show}\:\mathrm{that}\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}−\mathrm{1}}\:=\:\frac{\pi}{\mathrm{4}} \\ $$

Question Number 204468    Answers: 1   Comments: 0

How Can we prove Σ_(h=−∞) ^∞ J_h (z)=1

$$\mathrm{How}\:\mathrm{Can}\:\mathrm{we}\:\mathrm{prove}\:\underset{{h}=−\infty} {\overset{\infty} {\sum}}\:{J}_{{h}} \left({z}\right)=\mathrm{1} \\ $$

Question Number 204441    Answers: 0   Comments: 2

Question Number 204437    Answers: 1   Comments: 0

∫_0 ^(Π/2) sin(t)ln(sint)dt

$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {sin}\left({t}\right){ln}\left({sint}\right){dt} \\ $$

Question Number 204436    Answers: 0   Comments: 0

Question Number 204433    Answers: 3   Comments: 1

Question Number 204428    Answers: 0   Comments: 1

Question Number 204426    Answers: 1   Comments: 0

let a , b >0 find all differentiable function f:(0,∞)→(0,∞) such that f′((a/x)) = ((bx)/(f(x))) , ∀ x>0

$$\:\:\mathrm{let}\:\mathrm{a}\:,\:\mathrm{b}\:>\mathrm{0}\:\:\mathrm{find}\:\mathrm{all}\:\mathrm{differentiable}\:\mathrm{function} \\ $$$$\:\:\:\mathrm{f}:\left(\mathrm{0},\infty\right)\rightarrow\left(\mathrm{0},\infty\right)\:\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\:\:\:\:\mathrm{f}'\left(\frac{{a}}{\mathrm{x}}\right)\:\:=\:\:\frac{\mathrm{bx}}{\mathrm{f}\left(\mathrm{x}\right)}\:\:\:\:,\:\:\:\forall\:\mathrm{x}>\mathrm{0} \\ $$

Question Number 204461    Answers: 2   Comments: 0

Solve for x (x − 12)(x − 13) = ((34)/(33^2 ))

$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$$\left({x}\:−\:\mathrm{12}\right)\left({x}\:−\:\mathrm{13}\right)\:=\:\frac{\mathrm{34}}{\mathrm{33}^{\mathrm{2}} } \\ $$

Question Number 204423    Answers: 3   Comments: 1

Question Number 204421    Answers: 3   Comments: 0

x^3 +y^3 = 35 (1/x)+(1/y) =(5/6) solve for all possible values of x and y

$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} \:=\:\mathrm{35} \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}\:=\frac{\mathrm{5}}{\mathrm{6}} \\ $$$${solve}\:{for}\:{all}\:{possible}\:{values}\:{of}\:{x}\:{and}\:{y} \\ $$$$ \\ $$

Question Number 204418    Answers: 1   Comments: 1

Question Number 204417    Answers: 2   Comments: 0

Solve for z∈C e^z =ln z

$$\mathrm{Solve}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{e}^{{z}} =\mathrm{ln}\:{z} \\ $$

Question Number 204410    Answers: 0   Comments: 0

Question Number 204409    Answers: 3   Comments: 1

find ⌊∫_0 ^(2023) (2/(x+e^x ))dx⌋=?

$${find}\:\lfloor\int_{\mathrm{0}} ^{\mathrm{2023}} \frac{\mathrm{2}}{{x}+{e}^{{x}} }{dx}\rfloor=? \\ $$

Question Number 204405    Answers: 1   Comments: 1

Question Number 204398    Answers: 0   Comments: 0

$$ \\ $$

Question Number 204397    Answers: 3   Comments: 0

Question Number 204396    Answers: 1   Comments: 0

Question Number 204395    Answers: 1   Comments: 0

Question Number 204394    Answers: 0   Comments: 0

Question Number 204393    Answers: 0   Comments: 0

Question Number 204389    Answers: 1   Comments: 0

  Pg 174      Pg 175      Pg 176      Pg 177      Pg 178      Pg 179      Pg 180      Pg 181      Pg 182      Pg 183   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com