Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1789

Question Number 30858    Answers: 2   Comments: 0

∫_0 ^1 x∣x−4∣dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}\mid\mathrm{x}−\mathrm{4}\mid\mathrm{dx} \\ $$

Question Number 30862    Answers: 1   Comments: 0

Question Number 30861    Answers: 1   Comments: 0

A wave of frequency 10hz forms a stationery wave pattern in a medium where the velocity is 20cms^(−1) what is the distance between the adjacent nodes? pls help..

$$\mathrm{A}\:\mathrm{wave}\:\mathrm{of}\:\mathrm{frequency}\:\mathrm{10hz}\:\mathrm{forms} \\ $$$$\mathrm{a}\:\mathrm{stationery}\:\mathrm{wave}\:\mathrm{pattern}\:\mathrm{in}\:\mathrm{a}\:\mathrm{medium} \\ $$$$\mathrm{where}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{is}\:\mathrm{20cms}^{−\mathrm{1}} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{the}\:\mathrm{adjacent}\:\mathrm{nodes}? \\ $$$$ \\ $$$$\mathrm{pls}\:\mathrm{help}.. \\ $$

Question Number 30860    Answers: 1   Comments: 0

S= 3(1!)−4(2!)+5(3!)−6(4!)+.... .....−(2008)(2006!)+2007! Find value of S.

$${S}=\:\mathrm{3}\left(\mathrm{1}!\right)−\mathrm{4}\left(\mathrm{2}!\right)+\mathrm{5}\left(\mathrm{3}!\right)−\mathrm{6}\left(\mathrm{4}!\right)+.... \\ $$$$\:\:\:\:.....−\left(\mathrm{2008}\right)\left(\mathrm{2006}!\right)+\mathrm{2007}! \\ $$$${Find}\:{value}\:{of}\:{S}. \\ $$

Question Number 30856    Answers: 1   Comments: 1

Question Number 30855    Answers: 1   Comments: 0

∫((cosec^2 (x))/(√(cosecx+cotx)))dx

$$\int\frac{\mathrm{cosec}^{\mathrm{2}} \left(\mathrm{x}\right)}{\sqrt{\mathrm{cosecx}+\mathrm{cotx}}}\mathrm{dx} \\ $$

Question Number 30849    Answers: 0   Comments: 5

x^7 +x^6 +x^5 +x^4 +x^3 +x^2 +x+1=0 Σ_(k=1) ^7 [ℜ(x_k )]^2 = ? x_k = k^( th) root of the equation ℜ(x_k ) = real part of the root

$${x}^{\mathrm{7}} +{x}^{\mathrm{6}} +{x}^{\mathrm{5}} +{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0} \\ $$$$\: \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{7}} {\sum}}\left[\Re\left({x}_{{k}} \right)\right]^{\mathrm{2}} \:=\:? \\ $$$${x}_{{k}} \:=\:{k}^{\:\mathrm{th}} \:\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\Re\left({x}_{{k}} \right)\:=\:\mathrm{real}\:\mathrm{part}\:\mathrm{of}\:\mathrm{the}\:\mathrm{root} \\ $$

Question Number 30840    Answers: 0   Comments: 1

Question Number 30836    Answers: 0   Comments: 1

Question Number 30827    Answers: 0   Comments: 0

Question Number 30823    Answers: 1   Comments: 0

Question Number 30820    Answers: 1   Comments: 0

Question Number 30813    Answers: 1   Comments: 0

Question Number 30808    Answers: 3   Comments: 0

Question Number 30803    Answers: 1   Comments: 0

oh how I wish this app has an AUDIO device system where we could explain all our doubts more accurately

$${oh}\:{how}\:{I}\:{wish}\:{this}\:{app}\:{has}\:{an} \\ $$$${AUDIO}\:{device}\:{system} \\ $$$${where}\:{we}\:{could}\:{explain} \\ $$$${all}\:{our}\:{doubts}\:{more} \\ $$$${accurately} \\ $$

Question Number 30798    Answers: 0   Comments: 1

find ∫_0 ^1 ((ln(1−x^2 ))/x^2 )dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 30796    Answers: 0   Comments: 0

find ∫_0 ^∞ e^(−(x^2 +(1/x^2 ))) dx.

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)} \:{dx}. \\ $$

Question Number 30787    Answers: 0   Comments: 0

Question Number 30783    Answers: 1   Comments: 0

Prove that determinant ((3,(a+b+c),(a^2 +b^2 +c^2 )),((a+b+c),(a^2 +b^2 +c^2 ),(a^3 +b^3 +c^3 )),((a^2 +b^2 +c^2 ),(a^3 +b^3 +c^3 ),(a^4 +b^4 +c^4 ))) =(a−b)^2 (b−c)^2 (c−a)^2

$${Prove}\:{that}\begin{vmatrix}{\mathrm{3}}&{{a}+{b}+{c}}&{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }\\{{a}+{b}+{c}}&{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }&{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} }\\{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }&{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} }&{{a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} }\end{vmatrix} \\ $$$$=\left({a}−{b}\right)^{\mathrm{2}} \left({b}−{c}\right)^{\mathrm{2}} \left({c}−{a}\right)^{\mathrm{2}} \\ $$

Question Number 30780    Answers: 1   Comments: 0

Question Number 30777    Answers: 0   Comments: 0

find interms of n A_n = ∫_0 ^∞ ((ln(x))/((1+x^ )^n )) dx with n from N and n≥3 .

$${find}\:{interms}\:{of}\:{n}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}^{} \right)^{{n}} }\:{dx}\:{with}\:{n}\:{from} \\ $$$${N}\:{and}\:{n}\geqslant\mathrm{3}\:. \\ $$

Question Number 30776    Answers: 1   Comments: 1

find ∫_0 ^1 ((xdx)/((1+x^2 )(√(1−x^4 )))) .

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{xdx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}\:. \\ $$

Question Number 30775    Answers: 1   Comments: 1

letα ∈]0,π[ calculate ∫_0 ^(π/2) (dx/(2(cosα +chx))) .

$$\left.{let}\alpha\:\in\right]\mathrm{0},\pi\left[\:\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}}{\mathrm{2}\left({cos}\alpha\:+{chx}\right)}\:.\right. \\ $$

Question Number 30774    Answers: 1   Comments: 1

find f(t)=∫_0 ^1 ln(1+tx^2 )dx with t>0

$${find}\:{f}\left({t}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{tx}^{\mathrm{2}} \right){dx}\:\:{with}\:{t}>\mathrm{0} \\ $$

Question Number 30773    Answers: 0   Comments: 1

let a>0 calculate ∫_0 ^∞ (dx/((x^2 +a^2 )^2 )) 2) calculate ∫_(−∞) ^(+∞) (x^2 /((x^2 +a^2 )^2 ))dx.

$${let}\:{a}>\mathrm{0}\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}. \\ $$

Question Number 30771    Answers: 0   Comments: 0

let I_n = ∫_0 ^(π/4) (dx/(cos^(2n+1) )) (n∈N) 1) find a and b fromR /∀x∈[0,(π/4)] (1/(cosx))=((acosx)/(1−sinx)) +((bcosx)/(1+sinx)) .find I_0 2) verify the relation (1/(cos^(2n+3) x))=(1/(cos^(2n+1) x)) +((sinx sinx)/(cos^(2n+3) )) .find the relation of recurrence between I_n and I_(n+1) .

$${let}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{dx}}{{cos}^{\mathrm{2}{n}+\mathrm{1}} }\:\:\:\:\left({n}\in{N}\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{and}\:{b}\:{fromR}\:/\forall{x}\in\left[\mathrm{0},\frac{\pi}{\mathrm{4}}\right] \\ $$$$\frac{\mathrm{1}}{{cosx}}=\frac{{acosx}}{\mathrm{1}−{sinx}}\:+\frac{{bcosx}}{\mathrm{1}+{sinx}}\:\:.{find}\:\:{I}_{\mathrm{0}} \\ $$$$\left.\mathrm{2}\right)\:{verify}\:{the}\:{relation} \\ $$$$\frac{\mathrm{1}}{{cos}^{\mathrm{2}{n}+\mathrm{3}} {x}}=\frac{\mathrm{1}}{{cos}^{\mathrm{2}{n}+\mathrm{1}} {x}}\:+\frac{{sinx}\:{sinx}}{{cos}^{\mathrm{2}{n}+\mathrm{3}} }\:.{find}\:{the}\:{relation} \\ $$$${of}\:{recurrence}\:{between}\:{I}_{{n}} \:{and}\:{I}_{{n}+\mathrm{1}} \:\:. \\ $$

  Pg 1784      Pg 1785      Pg 1786      Pg 1787      Pg 1788      Pg 1789      Pg 1790      Pg 1791      Pg 1792      Pg 1793   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com