Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1789
Question Number 30564 Answers: 0 Comments: 0
$${f}\:{and}\:{g}\:{are}\:\mathrm{2}\:{function}\:\:{C}^{{n}} \:{on}\:\left[{a},{b}\right]\:{prove}\:{that} \\ $$$$\int_{{a}} ^{{b}} \:{f}^{\left({n}\right)} \left({x}\right){g}\left({x}\right){dx}=\left[\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(−\mathrm{1}\right)^{{k}} \:{f}^{\left({k}\right)} {g}^{\left({n}−{k}\right)} \right]_{{a}} ^{{b}} \:+\left(−\mathrm{1}\right)^{{n}} \int_{{a}} ^{{b}} {f}\left({x}\right){g}^{\left({n}\right)} \left({x}\right){dx} \\ $$
Question Number 30563 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\mid{x}−\mathrm{2}\:\left[\frac{{x}+\mathrm{1}}{\mathrm{2}}\right]\mid \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}\:{is}\:{periodic} \\ $$$$\left.\mathrm{2}\right)\:{simplify}\:{f}\left({x}\right)\:{if}\:{p}\leqslant{x}+\mathrm{1}\:{and}\:{p}\in{Z}\:. \\ $$
Question Number 30560 Answers: 0 Comments: 0
$${study}\:{the}\:{roots}\:{of}\:{f}_{{n}} \left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\:\frac{{x}^{{k}} }{{k}!}\:. \\ $$
Question Number 30559 Answers: 0 Comments: 0
$${find}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {dt}\:\:. \\ $$
Question Number 30558 Answers: 0 Comments: 0
$${find}\:{I}=\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:\:{arctan}\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\:\:{dx}\:\:.\right. \\ $$
Question Number 30557 Answers: 0 Comments: 0
$${if}\:\varphi\:{convexe}\:{and}\:{f}\:{continue}\:{on}\:\left[{a},{b}\right]\:{prove}\:{that} \\ $$$$\varphi\left(\:\frac{\mathrm{1}}{{b}−{a}}\:\int_{{a}} ^{{b}} \:{f}\left({t}\right){dt}\right)\leqslant\:\frac{\mathrm{1}}{{b}−{a}}\:\int_{{a}} ^{{b}} \:\varphi{of}\left({t}\right){dt}. \\ $$
Question Number 30556 Answers: 0 Comments: 0
$${let}\:\:{S}_{{n}} \left({x}\right)=\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{{sin}\left({kx}\right)}{{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)}\:\:{find}\:{lim}_{{n}\rightarrow\infty} {S}_{{n}} \left({x}\right). \\ $$
Question Number 30555 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\sqrt{\mathrm{1}−{t}^{\mathrm{4}} }}\:. \\ $$
Question Number 30554 Answers: 0 Comments: 0
$${find}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{xcos}\theta\:+\mathrm{1}}{{x}^{\mathrm{2}} \:+\mathrm{2}{xcos}\theta\:+\mathrm{1}}{dx}\:. \\ $$
Question Number 30553 Answers: 0 Comments: 3
$${find}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \left(\mathrm{1}+{sinx}\right)^{{x}} \:−\left(\mathrm{1}+{x}\right)^{{sinx}} . \\ $$
Question Number 30552 Answers: 0 Comments: 0
$${find}\:{s}\left({x}\right)=\:\sum_{{n}\geqslant\mathrm{0}} \:\frac{{sin}\left({na}\right)}{\left({sina}\right)^{{n}} }\:\frac{{x}^{{n}} }{{n}!}\:{and}\: \\ $$$${T}\left({x}\right)\:=\sum_{{n}\geqslant\mathrm{0}} \:\:\frac{{cos}\left({na}\right)}{\left({sina}\right)^{{n}} }\:\frac{{x}^{{n}} }{{n}!}\:. \\ $$
Question Number 30551 Answers: 0 Comments: 0
$$\:{find}\:\:{S}\:=\:\sum_{{n}\geqslant\mathrm{3}} \:\:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)\left({n}−\mathrm{2}\right)\mathrm{2}^{{n}} }\:. \\ $$
Question Number 30550 Answers: 0 Comments: 0
$${let}\:{f}\left({z}\right)=\:\sum_{{n}\geqslant\mathrm{0}} {a}_{{n}} {z}^{{n}} \:\:\:/{a}_{\mathrm{0}} =\mathrm{1}\:,{a}_{\mathrm{1}} =\mathrm{3}\:{and}\:\forall{n}\geqslant\mathrm{2} \\ $$$${a}_{{n}} =\mathrm{3}{a}_{{n}−\mathrm{1}} −\mathrm{2}\:{a}_{{n}−\mathrm{2}} \:\:\:\:{find}\:{f}\left({z}\right)\:{for}\:\mid{z}\mid<\mathrm{1}\:\:\left({z}\in{C}\right)\:. \\ $$
Question Number 30549 Answers: 0 Comments: 0
$${let}\:{S}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{3}{n}} }{\left(\mathrm{3}{n}\right)!}\:\:{find}\:{S}\left({x}\right). \\ $$
Question Number 30548 Answers: 0 Comments: 0
$${let}\:{put}\:\:{for}\:\mid\lambda\mid<\mathrm{1}\:\:\:\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\frac{{cos}\left({nx}\right)}{\mathrm{1}−\mathrm{2}\lambda{cosx}\:+\lambda^{\mathrm{2}} }{dx}\: \\ $$$${find}\:{u}_{{n}} \:{interms}\:{of}\:{n}\:{and}\:\lambda. \\ $$
Question Number 30547 Answers: 0 Comments: 0
$${ind}\:{S}=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{n}^{\mathrm{3}} \:+{n}^{\mathrm{2}} \:+{n}+\mathrm{1}}{{n}!}\:\:. \\ $$
Question Number 30546 Answers: 0 Comments: 0
$${find}\:{I}\:=\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{{x}^{\mathrm{2}} }{dx}\:. \\ $$
Question Number 30545 Answers: 0 Comments: 0
Question Number 30544 Answers: 0 Comments: 0
$${find}\:{I}=\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{t}}{\mathrm{2}+{sint}}{dt}. \\ $$
Question Number 30543 Answers: 1 Comments: 1
Question Number 30542 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{{x}} \:\:{e}^{−{u}^{\mathrm{2}} } {du}=\:{x}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{e}^{−{x}^{\mathrm{2}} {tan}^{\mathrm{2}} {t}} }{{cos}^{\mathrm{2}} {t}}{dt}\:\:. \\ $$$$ \\ $$
Question Number 30541 Answers: 0 Comments: 0
$$\mathrm{4}{n}\mathrm{568} \\ $$
Question Number 30540 Answers: 0 Comments: 0
$$\mathrm{Show}\:\mathrm{that}\:\:\begin{vmatrix}{\mathrm{bc}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{ca}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{ab}}\\{\:\mathrm{a}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{b}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{c}}\\{\:\mathrm{a}^{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:} \:\mathrm{b}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{c}^{\mathrm{2}} }\end{vmatrix}\:\:=\:\:\left(\mathrm{b}\:−\:\mathrm{a}\right)\left(\mathrm{c}\:−\:\mathrm{a}\right)\left(\mathrm{c}\:−\:\mathrm{b}\right)\left(\mathrm{ab}\:+\:\mathrm{bc}\:+\:\mathrm{ac}\right) \\ $$
Question Number 30538 Answers: 1 Comments: 0
$${A}\:{man}\:{rows}\:{a}\:{boat}\:{downstream} \\ $$$${for}\:\mathrm{3}\:{hours}\:{and}\:{then}\:{upstream} \\ $$$${for}\:\mathrm{3}\:{hours}.\:{If}\:{he}\:{covered}\:{a} \\ $$$${total}\:{distance}\:{of}\:\mathrm{12}{km},\:{find} \\ $$$${the}\:{speed}\:{of}\:{the}\:{water}\:{current}. \\ $$$$ \\ $$
Question Number 30626 Answers: 0 Comments: 6
Question Number 30529 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)={e}^{−{x}^{\mathrm{2}} } \:\:{prove}\:{that}\:{f}^{\left({n}\right)} \:{is}\:{at}\:{form} \\ $$$${f}^{\left({n}\right)} =\:{p}_{{n}\:} \:{e}^{−{x}^{\mathrm{2}} } \:\:{find}\:{relation}\:{between}\:{p}_{{n}} {and}\:{p}_{{n}+\mathrm{1}\:} . \\ $$$$\left.\mathrm{2}\right)\:{find}\:{p}_{\mathrm{0}} \:,{p}_{\mathrm{1}} ,\:{p}_{\mathrm{2}} ,{p}_{\mathrm{3}} \\ $$
Pg 1784 Pg 1785 Pg 1786 Pg 1787 Pg 1788 Pg 1789 Pg 1790 Pg 1791 Pg 1792 Pg 1793
Terms of Service
Privacy Policy
Contact: info@tinkutara.com