8cos^4 x−8cos^2 x+1=0
solution:8cos^2 x(cos^2 x−1)+1=0⇒
−8cos^2 xsin^2 x=−1⇒
sin^2 2x=(1/2)⇒sinx=+_− ((√2)/2)⇒
{ ((2x=2kπ+(π/4))),((2x=2kπ+((3π)/4))) :}
{ ((2x=2kπ−(π/4))),((2x=2kπ+((5π)/4))) :}
and so we have
{ ((x=kπ+(π/8))),((x=kπ+((3π)/8))) :}
{ ((x=kπ−(π/8))),((x=kπ+((5π)/8))) :}
why x=((kπ)/4)+(π/8)?
can we solve by another way?
|