Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1789

Question Number 30738    Answers: 1   Comments: 1

A boy can swim with a speed of 26m/s in still water.He wants to swim across a 150m river from a point A to point B which is directly opposite the other side of the river.The river flows with a speed of 10m/s. i)if he always swim in the direction parallel to AB,find how far he lands downstream of B. ii)In what direction relative to the bank must he swim so as to cross directly from A to B.

$${A}\:{boy}\:{can}\:{swim}\:{with}\:{a}\:{speed}\:{of} \\ $$$$\mathrm{26}{m}/{s}\:{in}\:{still}\:{water}.{He}\:{wants}\:{to} \\ $$$${swim}\:{across}\:{a}\:\mathrm{150}{m}\:{river}\:{from} \\ $$$${a}\:{point}\:{A}\:{to}\:{point}\:{B}\:{which}\:{is}\: \\ $$$${directly}\:{opposite}\:{the}\:{other}\:{side} \\ $$$${of}\:{the}\:{river}.{The}\:{river}\:{flows}\:{with} \\ $$$${a}\:{speed}\:{of}\:\mathrm{10}{m}/{s}. \\ $$$$\left.{i}\right){if}\:{he}\:{always}\:{swim}\:{in}\:{the}\: \\ $$$${direction}\:{parallel}\:{to}\:{AB},{find}\:{how} \\ $$$${far}\:{he}\:{lands}\:{downstream}\:{of}\:{B}. \\ $$$$\left.{ii}\right){In}\:{what}\:{direction}\:{relative}\:{to} \\ $$$${the}\:{bank}\:{must}\:{he}\:{swim}\:{so}\:{as}\:{to} \\ $$$${cross}\:{directly}\:{from}\:{A}\:{to}\:{B}. \\ $$

Question Number 30737    Answers: 0   Comments: 1

∫(1/(x^2 +ln x))dx

$$\int\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{ln}\:{x}}{dx} \\ $$

Question Number 30739    Answers: 0   Comments: 0

let (u_n ) / u_1 =1−i and ∀p∈{2,3,...n} u_p =u_(p−1) j with j=e^(i((2π)/3)) 1)verify that u_1 +u_2 +u_3 =0 2)prove that ∀p∈ {4,5,...,n} u_p =u_(p−3) 3)find the value of S_n =Σ_(i=1) ^n u_i 4)calculate α_n = Σ_(p=0) ^(n−1) cos(−(π/4) +((2pπ)/3)) and β_n = Σ_(p=0) ^(n−1) sin(−(π/4) +((2pπ)/3)).

$${let}\:\left({u}_{{n}} \right)\:/\:{u}_{\mathrm{1}} =\mathrm{1}−{i}\:{and}\:\:\forall{p}\in\left\{\mathrm{2},\mathrm{3},...{n}\right\}\:{u}_{{p}} ={u}_{{p}−\mathrm{1}} {j}\:{with} \\ $$$${j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$$$\left.\mathrm{1}\right){verify}\:{that}\:{u}_{\mathrm{1}} \:+{u}_{\mathrm{2}} \:+{u}_{\mathrm{3}} =\mathrm{0} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\forall{p}\in\:\left\{\mathrm{4},\mathrm{5},...,{n}\right\}\:\:{u}_{{p}} ={u}_{{p}−\mathrm{3}} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:{S}_{{n}} \:=\sum_{{i}=\mathrm{1}} ^{{n}} \:{u}_{{i}} \\ $$$$\left.\mathrm{4}\right){calculate}\:\:\alpha_{{n}} =\:\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{1}} {cos}\left(−\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{2}{p}\pi}{\mathrm{3}}\right)\:{and} \\ $$$$\beta_{{n}} =\:\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{sin}\left(−\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{2}{p}\pi}{\mathrm{3}}\right). \\ $$

Question Number 30719    Answers: 1   Comments: 4

Question Number 30711    Answers: 1   Comments: 0

Question Number 33450    Answers: 1   Comments: 1

Question Number 30704    Answers: 0   Comments: 0

Question Number 30665    Answers: 0   Comments: 0

find ∫_0 ^π (dx/(1+cos(2x) +sin(2x))) .

$${find}\:\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+{cos}\left(\mathrm{2}{x}\right)\:+{sin}\left(\mathrm{2}{x}\right)}\:. \\ $$

Question Number 30657    Answers: 0   Comments: 2

lim_(x→∞) e^(−(x^2 /2))

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \\ $$

Question Number 30646    Answers: 1   Comments: 2

Question Number 30631    Answers: 0   Comments: 0

Question Number 30628    Answers: 1   Comments: 0

Question Number 30627    Answers: 1   Comments: 0

Question Number 30687    Answers: 1   Comments: 0

Given that LCM(A,B,C)=252 LCM(A,B)=36 & LCM(A,C)=63; then: LCM(B,C)=? Pl determine all possible answers.

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{LCM}\left(\mathrm{A},\mathrm{B},\mathrm{C}\right)=\mathrm{252} \\ $$$$\mathrm{LCM}\left(\mathrm{A},\mathrm{B}\right)=\mathrm{36}\:\&\:\mathrm{LCM}\left(\mathrm{A},\mathrm{C}\right)=\mathrm{63}; \\ $$$$\mathrm{then}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{LCM}\left(\mathrm{B},\mathrm{C}\right)=? \\ $$$$\mathrm{Pl}\:\mathrm{determine}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{answers}. \\ $$

Question Number 30615    Answers: 1   Comments: 0

Question Number 30614    Answers: 1   Comments: 0

Consider that two cars are accelerating along the same road and if the distance between them was observed to be increasing,what deduction can you make as regards the acceleration? a)it implies that the trailing car has the smaller acceleration b)it implies that the two cars are accelerating at the same rate c)it implies nothing about the acceleration d)it implies that the leading car has the greater acceleration.

$${Consider}\:{that}\:{two}\:{cars}\:{are}\: \\ $$$${accelerating}\:{along}\:{the}\:{same}\:{road} \\ $$$${and}\:{if}\:{the}\:{distance}\:{between}\:{them} \\ $$$${was}\:{observed}\:{to}\:{be}\:{increasing},{what} \\ $$$${deduction}\:{can}\:{you}\:{make}\:{as}\:{regards} \\ $$$${the}\:{acceleration}? \\ $$$$\left.{a}\right){it}\:{implies}\:{that}\:{the}\:{trailing}\:{car} \\ $$$${has}\:{the}\:{smaller}\:{acceleration} \\ $$$$\left.{b}\right){it}\:{implies}\:{that}\:{the}\:{two}\:{cars}\:{are} \\ $$$${accelerating}\:{at}\:{the}\:{same}\:{rate} \\ $$$$\left.{c}\right){it}\:{implies}\:{nothing}\:{about}\:{the} \\ $$$${acceleration} \\ $$$$\left.{d}\right){it}\:{implies}\:{that}\:{the}\:{leading}\:{car}\: \\ $$$${has}\:{the}\:{greater}\:{acceleration}. \\ $$

Question Number 30613    Answers: 1   Comments: 1

A car negotiates a bend of radius 20m with an acceleration of 12m/s^2 .What is the maximum speed the car can attain without skidding?

$${A}\:{car}\:{negotiates}\:{a}\:{bend}\:{of}\:{radius} \\ $$$$\mathrm{20}{m}\:{with}\:{an}\:{acceleration}\:{of}\: \\ $$$$\mathrm{12}{m}/{s}^{\mathrm{2}} .{What}\:{is}\:{the}\:{maximum} \\ $$$${speed}\:{the}\:{car}\:{can}\:{attain}\:{without} \\ $$$${skidding}? \\ $$

Question Number 30612    Answers: 0   Comments: 0

A car negotiates a bend of radius 20m with an acceleration of 12m/s^2 .What is the maximum speed the car can attain without skidding?

$${A}\:{car}\:{negotiates}\:{a}\:{bend}\:{of}\:{radius} \\ $$$$\mathrm{20}{m}\:{with}\:{an}\:{acceleration}\:{of}\: \\ $$$$\mathrm{12}{m}/{s}^{\mathrm{2}} .{What}\:{is}\:{the}\:{maximum} \\ $$$${speed}\:{the}\:{car}\:{can}\:{attain}\:{without} \\ $$$${skidding}? \\ $$

Question Number 30601    Answers: 0   Comments: 1

for 0<r≤1 and (θ,x)∈R^2 find S=Σ_(n=0) ^∞ r^n cos(nθ).

$${for}\:\mathrm{0}<{r}\leqslant\mathrm{1}\:{and}\:\left(\theta,{x}\right)\in{R}^{\mathrm{2}} \:\:{find} \\ $$$${S}=\sum_{{n}=\mathrm{0}} ^{\infty} \:{r}^{{n}} {cos}\left({n}\theta\right). \\ $$

Question Number 30600    Answers: 0   Comments: 0

let w_k =e^(i((2kπ)/n)) find A= Π_(k=0) ^(n−1) (a +bw_k ).

$${let}\:{w}_{{k}} ={e}^{{i}\frac{\mathrm{2}{k}\pi}{{n}}} \:\:\:\:{find}\:{A}=\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({a}\:+{bw}_{{k}} \:\right). \\ $$

Question Number 30599    Answers: 0   Comments: 1

decompose inside C(x) F= (1/((x−1)(x^n −1))) .

$${decompose}\:{inside}\:{C}\left({x}\right)\:\:{F}=\:\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)\left({x}^{{n}} \:−\mathrm{1}\right)}\:. \\ $$

Question Number 30598    Answers: 0   Comments: 1

prove that it exist one polynomial p/ p(cosx)=cos(nx) find the roots of p(x) .

$${prove}\:{that}\:{it}\:{exist}\:{one}\:{polynomial}\:{p}/ \\ $$$${p}\left({cosx}\right)={cos}\left({nx}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right)\:. \\ $$

Question Number 30597    Answers: 0   Comments: 0

let p(x)=(1+x)^m −e^(2imx) (1−x)^m factorize p(x) inside C[x].

$${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{x}\right)^{{m}} \:−{e}^{\mathrm{2}{imx}} \left(\mathrm{1}−{x}\right)^{{m}} \:{factorize}\:{p}\left({x}\right) \\ $$$${inside}\:{C}\left[{x}\right]. \\ $$

Question Number 30596    Answers: 0   Comments: 0

find all polynomial wich verify p(x^2 ) +p(x)p(x+1)=0.

$${find}\:{all}\:{polynomial}\:{wich}\:{verify}\: \\ $$$${p}\left({x}^{\mathrm{2}} \right)\:+{p}\left({x}\right){p}\left({x}+\mathrm{1}\right)=\mathrm{0}. \\ $$

Question Number 30595    Answers: 0   Comments: 1

let f(x)= (1/(x^2 −2cosαx+1)) find f^((n)) .

$${let}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} \:−\mathrm{2}{cos}\alpha{x}+\mathrm{1}}\:\:{find}\:{f}^{\left({n}\right)} . \\ $$

Question Number 30594    Answers: 0   Comments: 0

let p(x)=x^3 +1 and q(x)=x^4 +1 prove that D(p,q)=1.

$${let}\:{p}\left({x}\right)={x}^{\mathrm{3}} \:+\mathrm{1}\:{and}\:{q}\left({x}\right)={x}^{\mathrm{4}} \:+\mathrm{1}\:{prove}\:{that} \\ $$$${D}\left({p},{q}\right)=\mathrm{1}. \\ $$

  Pg 1784      Pg 1785      Pg 1786      Pg 1787      Pg 1788      Pg 1789      Pg 1790      Pg 1791      Pg 1792      Pg 1793   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com